

Nuclear weapons and nuclear strategies: "Economies of scope", country case studies (US, China and Russia), and the "nuclear resource curse" hypothesis

Ben Wealer, Simon Bauer, and Christian von Hirschhausen

Agenda

1) Introduction

- 2) The nuclear power paradox(es)
- 3) "Economies of scope" in nuclear technologies
- 4) Nuclear diplomacy and the nuclear resource curse
 - 1) Russia
 - 2) China
 - 3) United States of America
- 5) Conclusion

Research Program "Nuclear Power" (TUB & DIW Berlin)

Discussion Paper: Nuclear Power in the 21st Century, and reflection about "low-carbon energy transformation

1) Nuclear electricity has never been "economic"

2) "Economies of scope" can explain the nuclear paradox, i.e. high number of (uneconomic) projects

3) Nuclear power "resource curse" hypothesis: Positive relation between nuclear "newbies" and low level of civil and political liberties

Agenda

1) Motivation

- 2) The nuclear power paradox(es)
- 3) "Economies of scope" in nuclear technologies
- 4) Nuclear diplomacy and the nuclear resource curse and
 - 1) Russia
 - 2) China
 - 3) United States of America
- 5) Conclusion

The European nuclear power paradox:

Nuclear Capacity Development in the EU Reference Scenario and the Potencia model calculations

31			31	Argentina Armenia Belgium	since	e 2000	31		31	Nuclear countrie	S
Argentina Armenia Belgium Brazil Bulgaria Canada China				Brazil Bulgaria Canada China Czech Rep. Finland				Argentina Armenia Belgium Brazil Bulgaria Canada China		Emergin nuclear energy Nuclear phase ou counries	g ut
Czech Rep. Finland France				France Germany Hungary	Albania Algeria Banglade			Czech Rep. Finland France	Albania Algeria		21
Germany Hungary India Japan South Korea				Iran Japan South Korea	sn Belarus Ecuador Egypt Indonsia			Germany Hungary India Iran Japan	Bangladesh Belarus Ecuador Egypt Indonesia		
Lithuania Mexico Netherlands Pakistan Romania				Netherlan ds Pakistan Romania	Jordan Kenya Kuwait Laos Malaysia			South Korea Mexico Netherlands Pakistan Bomania	Jordan Kenya Kuwait Laos		
Russia Slovakia Slovenia South Africa	Egypt			Russia Slovakia Slovenia South Africa	Poland Saudi Arabia Sri Lanka Sudan			Russia Slovakia Slovenia South Africa	Malaysia Poland Saudi Arabia Sri Lanka	a	
Spain Sweden Switzerland Ukraine UK	Indone sia Iran Poland Turkey	Ita		Spain Sweden Switzerla nd	Thailand Turkey Uganda UAE	ltaly Germa ny		Spain Sweden Switzerland Ukraine UK	Sudan Thailand Turkey		2
US Taiwan	Vietna m	ly ¹		UKraine UK US Taiwan	Vietnaih			US Taiwan	UAE Vietnam		Germa

2000-2005

2010-2015

2015 -

MIT (2003): The Future of Nuclear Power

"In deregulated markets, nuclear power is not now cost competitive with coal and natural gas." (p. 3)

University of Chicago (2004):

"A case can be made that the nuclear industry will start near the bottom of its learning rate when new nuclear construction occurs. (p. 4-1) ... "The nuclear LCOE for the most favorable case, \$47 per MWh, is close but still above the highest coal cost of \$41 per MWh and gas cost of \$45 per MWh." (p. 5-1)

Parsons/Joskow (EEEP 2012)

"may be one day ..."

D'haeseleer (2013): Synthesis on the Economics of Nuclear Energy

"Nuclear new build is highly capital intensive and currently not cheap, ... it is up to the nuclear sector itself to demonstrate on the ground that cost-effective construction is possible." (p. 3)

Davis, L.W. (2012): Prospects for Nuclear Power. Journal of Economic Perspectives (26, 49-66))

"These external costs are in addition to substantial private costs. In 1942, with a shoestring budget in an abandoned squash court at the University of Chicago, Enrico Fermi demonstrated that electricity could be generated using a self-sustaining nuclear reaction. <u>Seventy years</u> later the industry is still trying to demonstrate how this can be scaled up cheaply enough to compete with coal and natural gas." (p. 63)

Davis (2012; JEP, p. 11): "70 years later …" current update for Europe (own calc.)

Table 3

Levelized Cost Comparison for Electricity Generation

	Levelized cost in cents per kWh						
Source	Nuclear	Coal	Natural gas				
MIT (2009) baseline	8.7	6.5	6.7				
Updated construction costs	10.4	7.0	6.9				
Updated construction costs and fuel prices	10.5	7.4	5.2				
With carbon tax of \$25 per ton CO_2	10.5	9.6	6.2				

	Levelized costs in €cents/kWh								
	Nuclear	Coal	Natural Gas						
Baseline (2016)	11	5,1	5,0						
CO ₂ -price: 25 €/t	11	6,3	5,7						
CO ₂ -price: 100 €/t	11	10,0	7,9						

Empirical "proof" of non-economic emergence of nuclear power plants (Wealer, et al., 2018)

TRANSFERS OF NUCLEAR TECHNOLOGY

Graphite moderated (GMR

Pressurised Water (PWR)

Heavy Water (HWR)

Boiling Water (BWR)

106/

Types of

reactors

present

Technologie

s installed

Date of construction

of the first

reactor

estimed th

Transfert of technolog

Colour of the selling

country

TECHNOLOGIES :

COUNTRIES:

TRANSMISSION :

Name of the

Country

<u>None</u> of the 674 or so reactors analysed in the text and documented in the appendix, has been <u>developed based</u> <u>on what is generally considered "economic" grounds</u>, i.e. the decision of private investors in the context of a market-based, competitive economic system. Given current technical and economic trends in the global energy industry, there is no reason to believe that <u>this</u> <u>rule will be broken in the near- or longer-term future</u>.

The origins of nuclear power: science and warfare (Lévêque 2014)

<u>None</u> of the 674 or so reactors analysed in the text and documented in the appendix, has been <u>developed based</u> <u>on what is generally considered "economic" grounds</u>, i.e. the decision of private investors in the context of a market-based, competitive economic system. Given current technical and economic trends in the global energy industry, there is no reason to believe that <u>this</u> <u>rule will be broken in the near- or longer-term future</u>.

Agenda

1) Motivation

- 2) The nuclear power paradox(es)
- 3) "Economies of scope" in nuclear technologies
- 4) Nuclear diplomacy and the nuclear resource curse and
 - 1) Russia
 - 2) China
 - 3) United States of America
- 5) Conclusion

Francois Lévêque (2014, p. 212): "The nuclear industry is the child of science and warfare"

Durchschnittliche Energieverteilung für die Spaltung des U²³⁵-Kerns in MeV:

Manhattan Project (1942 – 1946): Science ... and military warfare

First nuclear bomb: Trinity-Test, July 16, 1945

"Nuclear energy is the daugther of science and the military" (FL, 2014)

No "economic", but military incentives at the outset

Joint production emerging in the 1950s

No nuclear power plant built within a competitive, market-based system

Erste Atombombe: Trinity-Test , 1945 (Quelle: Wikipedia)

25

US-Präsident Eisenhower: Atoms for Peace, 1953 Unterzeichnung des EURATOM-Vertrags, (Quelle: germanhistorydocs.ghi-dc.org) 1957 (Quelle: germanhistorydocs.ghi-dc.org)

Atomkraft und Versorgungssicherheit 26. März 2014 Acheson-Lilienthal Report (1946, p.10): "The development of atomic energy for peaceful purposes and the development of atomic energy for bombs are in much of their course interchangeable and interdependent."

Lovins et al. (1980, p. 1144): "The propagation of nuclear power thus turns out to have embodied the illusion that we can split the atom into two roles as easily and irrevocably as into two parts—forgetting that atomic energy is a-tomic, indivisible."

Other work in this sense by many (REFORM and other) researchers

Hirschhausen (2017): interpretation of the nuclear industry in terms of "economies of scope", where strategies, costs, and benefits must be assessed in the multiproduct context of military and civilian uses of nuclear power.

Historical-empirical support for the "economies-of-scope" hypothesis ("dual use"): C(x, y) < C(x, 0) + C(0, y)

Country	"military use"	"civil use"
USA	 Nuclear power as cornerstone of military strategy: Project Manhattan, post-war build up nuclear weapon upgrade program (2014 – 2023): US-\$ 350 bn. 	 first co-production of electricity in Hanford Nautilus submarine: first use of PWR
Soviet Union	~ nuclear power as cornerstone of "Cold War"	~ direct synergies through the dual use of graphite-reactors to facilitate the extraction of plutonium + electricity
UK / France	~ indpendent military strategies post WW	~ + some electricity
India	~ converted the spent fuel to produce weapongrade plutonium (1974)	~ purchase of CANDU-heavy water reactor for civil purposes (I960s)
South Africa, North Korea, Sudan, etc.		

Stylized comparison between graphite- and light-water (pressurized) reactors

Reactor types compared									
LWR/PWR: ~ under pressure	Graphite-moderated (e.g. RBMK "reactor bolshoy moshchnosty								
focus on electricityplutonium extraction possible, but	kanalny") ~ no pressure, rods flexible								
complex	~ continuous, flexible plutonium extraction								

Are graphite-moderated NPPs ("plutonium factories") different from "normal" light-water reactors? Total outage data

2014 Operating Experience

DE-23 GRAFENRHEINFELD

6. Full Outages, Analysis by Cause

Outage Cause	20)14 Hours Lo	st	1983 to 2014 Average Hours Lost Per Year			
	Planned	Unplanned	External	Planned	Unplanned	External	
A. Plant equipment problem/failure		242			187		
 C. Inspection, maintenance or repair combined with refuelling 	437			762	3		
L. Human factor related					25		
Z. Other					4		
Subtotal	437	242	0	762	219	0	
Total	679			981			

7. Equipment Related Full Outages, Analysis by System

System	2014 Hours Lost	1983 to 2014 Average Hours Lost Per Year
11. Reactor and Accessories		22
14. Safety Systems		0
15. Reactor Cooling Systems		34
16. Steam generation systems		18
31. Turbine and auxiliaries	119	22
32. Feedwater and Main Steam System		13
35. All other I&C Systems		24
41. Main Generator Systems		47
42. Electrical Power Supply Systems	123	3
Total	242	183

Extended data to 2006-2015

	CAN	FRA	JPN	ESP	CHE	GBR	USA
GCRs in year.reactor	0	0	0	0	0	173	0
LWRs in year.reactor	0	580	525	80	50	10	1031
mean capacity (MWe)	704	1.080	866	942	667	548	995
mean availability	79%	77%	38%	86%	88%	68%	90%

Graphite-moderated (0.49) and light-water reactors (0.67): different mean (t-value: 10.054, p-value: 2.2e-16) ...

... and different distribution of capacity utilization values (Kolmogovor-Smirnov, p-value of 0.02566)

Data Analytics: The hypothesis seems to be correct... (Seifert, et al., 2018)

			Upsan	npling	Downsa	mpling	
			$\overline{\mathrm{GCR}}$	LWR	GCR	LWR	
	on	CCR	76.87%	24.90%	75.42%	25.91%	
CADT	cti, T	GON	(8.65 %)	(4.80 %)	$(9.99\ \%)$	(5.05 %)	
UARI	edi	IWD	23.13%	75.10%	24.58%	74.09%	
	$\mathbf{P}_{\mathbf{r}}$	LWR	(8.65 %)	(4.80 %)	$(9.99\ \%)$	(5.05 %)	
	nc	GCR	75.69%	24.13%	68.80%	27.56%	
DE	cti		(1.27%)	(1.88%)	(5.87 %)	(9.01 %)	
ĸr	edi	IWD	24.31%	75.87%	31.20%	72.44%	
	$\mathbf{P}_{\mathbf{r}}$	LWR	(1.27 %)	(1.88 %)	(5.87 %)	(9.01 %)	
	nc	CCD	NA	NA	83.33%	16.99%	
DO	cti	GUR	(0.00 %)	(0.00 %)	(27.33 %)	(2.03 %)	
BO	edi	IWD	NA	NA	16.67%	83.01%	
	$\mathbf{P}_{\mathbf{r}}$	LWK	$(0.00\ \%)$	$(0.00\ \%)$	(27.33 %)	(2.03 %)	
Table 4: Best predictions							

• Mills (1956) and Eisenhower (1961)

• Military and nuclear research apparatus are often the same e.g. CEA in France, CNNC in China, UKAE in the U.K., Pakistan

• Reactor vendors Areva (now-Framatome), KEPCO, Rosatom (Atomstroyexport) are state-owned companies in a centralized market environment

• Reactor vendors GE, Westinghouse are also military technology suppliers

• Financial aspect: "nuclear diplomacy" in form of offering technology and low interest loans (e.g. Export Import Banks, state loans)

Russia: Nuclear share of electricity generation and nuclear weapons in Russia, 1990-2016

China: Nuclear share of electicity generation and nuclear weapons in China, 1990-2016

US– Key Apects of the Military Nuclear Strategy (Nuclear Posture Review 2018)

Deployed warheads	Other warheads	Total inventory
1,930	2,500	7,000

Rehabilitation and modernization of the nuclear triade.

More strategic (taktisch) nuclear weapons in the form of "mini nukes".

In the short term, "mini nukes" will be employed on submarines. Advantage: There is no need for a "host nation" (e.g. Germany, Italy, Turkey).

In Europe: increase the number of bombers and "dual capable aircraft"

Budget for the modernization and expansion of the nuclear arsenal: +6,4% of DoD Budgets (+/- 33 bn USD, DoD Base Budgets 2018: 521,8 bn USD).

No ratification of the Comprehensive Nuclear Test Ban Treaty.

Main motivation: allegation, that Russia broke agreements (e.g. Intermediate-range Nuclear Forces Treaty). Russia denies this and accuses the US to have done the same (e.g. nuclear weapons systems in Romania and Poland)

Overall strong "antirussia" rhetoric in the report.

The perspectives of nuclear power

No Scope countries

Germany, Spain, Belgium, Italy, USA, UK, India, Switzerland, Sweden, South Korea

→ Close down NPPs, currently no replacement foreseeable

What about Japan, Eastern Europe?

Scope countries

Pakistan, France, North Korea, Russia, China

→ Scope countries call for future nuclear deployment, heavy investments into the nuclear supply chain, and retrofitting of older nuclear plants.

Newcomer countries

Iran, UAE, Turkey, Saudi Egypt, Arabia, Jordan. Bangladesh, Sudan, Belarus

→ High dynamics especially in the Middle East: if Iran wants reprocessing, Saudi Arabia will want it too

Agenda

- 1) Motivation
- 2) The nuclear power paradox(es)
- 3) "Economies of scope" in nuclear technologies
- 4) Nuclear diplomacy, the nuclear resource curse and low carbon transformation
 - 1) Russia
 - 2) China
 - 3) United States of America
- 5) Conclusion

Discussion Paper: Nuclear Power in the 21st Century, and reflection about "low-carbon energy transformation

Bridging nuclear policies and "low-carbon transformation" at the country level

		Sectors				
		CoalExit	Nuclear	Renewab	Efficienc	
			1700	les	У	
Countries			Decasion Prems Standard Namer in the Thready (in)			
Germany	Omisin ver Honblauce Omisin ver Honblauce Made in Germany" Berträcksfelden Honblauce Made in Germany"					
Russia	e Mude in Generati					
China						
India						
U.S.						
Mexico						

"One of the surprising features of modern economic growth is that economies with abundant natural resources have tended to grow less rapidly than naturalresource-scarce economies." (Sachs and Warner, 1995)

Recent examples:

- ~ Venezuela (oil)
- ~ Democratic Republic of Congo (mineral resources)

[not to distinguish with: "Dutch disease", not part of the resource curse analysis]

Nuclear hypothesis: The availability of abundant and cheap nuclear power capacities, the "resource", incites many emerging and poor countries to enter the sector (to "go nuclear"), but is likely to turn into a resource curse not only in economic, but also in longer-term development perspectives.

Imports "too cheap to meter" after World War II ...

US-Präsident Eisenhower: Atoms for Peace, 1953

(Quelle: germanhistorydocs.ghi-dc.org)

EURATOM-Treaty, 1957 (Quelle: germanhistorydocs.ghi-dc.org)

31			31	Argentina Armenia Belgium	since	e 2000	31		31	Nuclear countrie	S
Argentina Armenia Belgium Brazil Bulgaria Canada China				Brazil Bulgaria Canada China Czech Rep. Finland				Argentina Armenia Belgium Brazil Bulgaria Canada China		Emergin nuclear energy Nuclear phase ou counries	g ut
Czech Rep. Finland France				France Germany Hungary	Albania Algeria Banglade			Czech Rep. Finland France	Albania Algeria		21
Germany Hungary India Japan South Korea				Iran Japan South Korea	sn Belarus Ecuador Egypt Indonsia			Germany Hungary India Iran Japan	Bangladesh Belarus Ecuador Egypt Indonesia		
Lithuania Mexico Netherlands Pakistan Romania				Netherlan ds Pakistan Romania	Jordan Kenya Kuwait Laos Malaysia			South Korea Mexico Netherlands Pakistan Bomania	Jordan Kenya Kuwait Laos		
Russia Slovakia Slovenia South Africa	Egypt			Russia Slovakia Slovenia South Africa	Poland Saudi Arabia Sri Lanka Sudan			Russia Slovakia Slovenia South Africa	Malaysia Poland Saudi Arabia Sri Lanka	a	
Sweden Switzerland Ukraine UK	Indone sia Iran Poland Turkey	Ita		Spain Sweden Switzerla nd	Thailand Turkey Uganda UAE	ltaly Germa ny		Spain Sweden Switzerland Ukraine UK	Sudan Thailand Turkey		2
US Taiwan	Vietna m	ly ¹		UKraine UK US Taiwan	Vietnaih			US Taiwan	UAE Vietnam		Germa

2000-2005

2010-2015

2015 -

Russia's nuclear diplomacy: the major seller of reactor technology

- Rosatom claims 67 percent of the worldwide nuclear construction projects—35 units are signed as contracts and intergovernmental agreements.
- Of the 54 construction projects in late 2017 17 or ~32 percent are built by Rosatom.
- Russian "nuclear diplomacy" with reactor exports to India, Belarus, China and contracts with Turkey, Egypt, Saudi Arabia.
- Russia not only delivers technology but also the financial capital (low interest loans), e.g. 11.35 bn for Bangladesh, 9bn for Belarus, 25bn for Egypt...
- According to Rosatom, the ordering portfolio is worth over 133 billion USD.
- A large part of the funding for these projects comes from Russia's Wealth Funds, which is also used for stabilizing the Russian economy.

Supplier Country	Number of NPP construction projects	Share [%]	ΗHI
Russia	17	31,48	991
China	12	22,22	494
Korea	9	16,67	278
USA	6	11,11	123
India	4	7,41	55
France	4	7,41	55
Japan	2	3,70	14
Total	54	100,00	2.010

China's nuclear diplomacy: ...

China's unique Position as a seller and buyer of reactor technology.

- China has established itself firmly among the three global nuclear superpowers, alongside or even leading the United States and Russia.
- In 1993, China started exporting reactors: CNP 300 to Pakistan ...
- ... and has been successful in its nuclear diplomacy recently, providing the Hualong HPR to countries like Pakistan, probably Sudan, the U.K., and Argentina
- The export of reactor technology is done by the Chinese companies in cooperation with the China Bank of Development and

the Export and Import Bank of China in countries like UK, Pakistan, or Argentina.

Supplier Country	Number of NPP construction projects	Share [%]	ННІ
Russia	17	31,48	991
China	12	22,22	494
Korea	9	16,67	278
USA	6	11,11	123
India	4	7,41	55
France	4	7,41	55
Japan	2	3,70	14
Total	54	100,00	2.010

USA's nuclear diplomacy: ... unclear

- Currently only construction project outside of the US: China. Westinghouse expects China to build at least 20 AP1000s in the coming decade <u>but</u> due to the technology transfer, the company will not earn money on this.
- **Current discussions: India and Saudi Arabia**
- Westinghouse received strong support from US Energy Secretary Rick Perry for its plan to build six AP1000s in India.
- Westinghouse is also confident that it will be shortlisted for the Saudi Arabian tender.
- But Rosatom's business model seems to be more promising as China just ordered four VVER-1200 and India already turned to Russia for imports of VVER-1200, too.
- But: will current administration loosen security restrictions?
- Rick Perry in 2018 about Westinghouse's future: "Nobody in the world makes better reactors than Westinghouse. They had some challenges in the past from its business practices. We leave that where it is. The bottom line is, that's all behind them. They are lean and mean and ready to get to the work."

Ratio planned nuclear capacity (2015) and overall capacity (2015) vs. Freedom Index (2015)

Agenda

- 1) Motivation
- 2) The nuclear power paradox(es)
- 3) "Economies of scope" in nuclear technologies
- 4) Nuclear diplomacy, the nuclear resource curse and low carbon transformation
 - 1) Russia
 - 2) China
 - 3) United States of America
- 5) Conclusion

1) Nuclear electricity has never been "economic"

2) "Economies of scope" can explain the nuclear paradox, i.e. high number of (uneconomic) projects

3) Nuclear power "resource curse" hypothesis: Positive relation between nuclear "newbies" and low level of civil and political liberties

Nuclear weapons and nuclear strategies: "Economies of scope", country case studies (US, China and Russia), and the "nuclear resource curse" hypothesis

Ben Wealer, Simon Bauer, and Christian von Hirschhausen