

RENEWABLES IN THE MENA REGION – EXPERIENCES AND HOPES

Ulrike Lehr

GWS, Institute for Economic Structures Research, Osnabrück, Germany

Acknowledgement

The results presented are based upon research commissioned by GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit, GmbH, German Society for International Cooperation, Ltd.) and UNDP, Lebanon. Most results can be found on energypedia, recreee.org and the homepage of GWS.

http://www.rcreee.org/sites/default/files/report-final_rcreee_website-_13-02.pdf

GWS: Where and who?

- Privately funded think tank/ research institute / consultancy
- Founded in 1996 university spinoff
- Member of the INFORUM modelling group
- Currently ~ 24 researchers
- Private and public customers
 - International, national and regional Governments, Ministries
 - International, national and regional Administration
 - EC DG-TREN, RTD, Env, Climate, Energy
 - Energy companies, banks

www.plz-postleitzahl.de/.../index.html

What we do:

- Support private and public decision makers with sound empirical, data based, economic tools
- Main areas of interest:
 - Environmental questions, energy policy, focus on renewable energy, materials, focus on resource efficiency
 - Economic modelling, individual country models, regional models, world
 - ⇒ Labor market issues

Renewable energy in MENA – why?

http://www.solarmillennium.de/cache/7c12440b73825bbd5ccdb00085ae3a7f.jpg

Bhenomagend Bgut Bgeeignet Bungeeignet

MENA lies in the zone of high solar radiation; and decent wind speed

Renewable energy in MENA – why?

Energy issues

- Increasing populations
- Increasing energy demand
- No sufficient supply
- Structural problems on the energy markets:
 - ⇒ High subsidies
 - ⇒ Monopolistic structures
 - ⇒ Frequent power-out
 - ⇒ Insufficient efficiency in cost recovery

Other

- High unemployment
- High share of young people
- High share of young (educated) unemployed

males

- Low confidence of foreign investors
- Money with strings attached

MENA Region and countries analysed in depth

"Dieses Foto" von Unbekannter Autor ist lizenziert gemäß CC BY-SA

WWW.GWS-OS.COM / © GWS 2018

Economy

- ⇒ **GDP/Cap:** \$15,200 (2017 est.)
- ⇒ Hydrocarbons 30% of GDP,
 60% of budget revenues, and
 nearly 95% of export earnings.
- ⇒ 10th-largest reserves of natural gas in the world
- \Rightarrow 6th-largest gas exporter.
- \Rightarrow 16th in proven oil reserves.
- ⇒ Resource curse!

	Wind	PV	CSP	Hydro	Total RE	Total all Energy		Wind	PV	CSP	Total	Target
MW	0	0	25	228	253	11390	MW	10	6	25	41	201
							MW	50	182	325	557	201
							MW	270	831	1500	2601	202
							MW	2000	2800	7200	12000	203

©rcreee

Renewable energy

- ⇒ Algeria aims to increase the share of renewables to 40% by 2030
- ⇒ The most important driver is CSP and PV technology
- \Rightarrow RE fund has been established by executive decree No. 11-423 (December 2011).
- ⇒ No policy of financial guarantee to private investors to ensure payment power purchase agreement.
- \Rightarrow No customs duty or internal tax benefits for renewable energy projects.

Background – Tunisia – Energy - Economy– Facts and Policy

- Tunisia does not have a policy of providing financial guarantees to private investors to ensure payment under power purchase agreements.
- According to tax legislations, all RE equipment and components that do not have locally-manufactured substitutes are fully-exempted from customs import duty and internal taxes.
- The National Fund for Energy Saving (FNME) provides financing for renewable energy and energy efficiency projects.
- Net metering
- Prosol for SWH, PV

©rcreee

Renewable energy

- Egypt aims to increase the share of renewables to 20% by 2020
- ⇒ The most important driver is wind technology
- ⇒ Large-scale private RE
 projects are encouraged +
 long term power purchase
 agreements are ensured

Economy

- ➡ GDP/cap \$12,700
- ⇒ Own oil, own gas

Background – Lebanon – Energy - Economy– Facts and Policy

- GDP/Cap: \$19,400 (2017 est.)
- No natural resources exploited so far
- BUT: Tamar – and the adjacent gas fields.....

Renewable energy

Lebanon aims to increase the share of renewables to 12% by 2030

The most important driver is * Total operating capacity is around 150 MW. wind technology

- Currently, there is no RE fund established by law for financing RE projects. However, the Central Bank of Lebanon offers low interest loans (0.6%) for RE projects for a period of 14 years (with 4 years of grace period, and 10 years for repayment). There is also a grant from the European Union offering to cover up to 15% of project costs not exceeding USD 150,000 per project. The 15% grant applies to RE projects in nonsubsidized sectors and 5% for projects in subsidized sectors.
- Lebanon does not have yet a policy of providing financial guarantee to private investors to ensure payment under power purchase agreement.
- No customs duties or internal tax benefits provided to RE projects. Lebanon is in the process of compiling a list of RE equipment for future customs duty exemption.

[©]rcreee

Measuring employment from renewable energy – why and how?

WWW.GWS-OS.COM / © GWS 2018

Measuring employment from RE and EE – who asks and why?

Algeria: Energy Ministry; Tunisia: ANME (Energy Agency); Egypt: RCREEE and NREA (Ministry of New Energy); Lebanon: UNDP

- Control what has been achieved and what will be achievable
- Translate installations into local/ domestic jobs
- Account for economic opportunities under the respective local conditions

Theory: Renewable energy and energy efficiency value

chains – direct and indirect effects

Economic tool for the analysis of direct and indirect effects

- ⇒ Goes back to Wassily Leontief (Nobel prize 1973)
- ⇒ Illustrates the effects of additional demands in one industry on all industries in the economy
- ⇒ Input-Output Tables are available for more than 100 countries in the world
- Consistent analytical framework which helps to connect RE deployment analysis to economic analysis already done for other sectors or the whole economy

Leontief model and equations

Total production X (vector) of an economic sector equals the sum of final demand D and intermediate demand by other sectors AX, with A (matrix) in percent:

$$X = A^*X + D$$

Reformulation gives the famous Leontief equation:

 $X = (I-A)^{(-1)*} D$

To calculate answers to a demand change:

 $\Delta X = (I-A)^{(-1)*}\Delta D$

► To calculate employment answers to a demand change

 $\Delta E = e^*[(I-A)^{(-1)*}\Delta D]$

Advantages for the estimation of jobs from EE&RE

- ► RE&EE deployment is interpreted as demand change.
- ► Input structure of RE and EE is known from earlier projects
- ► IO model yields indirect impacts of the increase in RE and EE.
- Shows how increasing integration and increasing the economic and productive capacity spurs employment
- Shows which sectors will be winning most.
- Can be easily driven to the future
- Recommended by ILO, IRENA, IEA-RETD

No fun without data!

© 2018 GWS mbH

Similarities and differences

WWW.GWS-OS.COM / © GWS 2018

Economic structures

- Successful democratic reforms after Arab spring
- Economy not back on track
- Early mover with renewable energy strategy
- Good at developing strategies and instruments, lacking implementation
- Encourages private enterprises, medium red tape
- Turbulent also without Arab spring
- ► High educated population
- Service and science (IT) oriented economic structure
- Few production capacities
- Severe impact from Syrian crisis
- Small elite
- High bureaucracy hurdles

- Turbulent time after Arab Spring, elected Government, Military coup
 Economy – also tourism – not fully back
 Large infrastructure investments to tackle unemployment (new capital, etc.)
 Low incentives for private enterprises
 - Many new enterprises founded by military, also solar PV production
 - Regional, agriculture, solar pumping, rural jobs
 - Stalemate after "black years"
 - Stalled political institutions
 - Resource curse
 - Tendency to closed economy
 - Developed oil/gas/hydrocarbon industry
 - Self-sufficient

Labor market

Labor force:

- 11.82 million (2017 est.)
 - ⇒ agriculture: 10.8%
 - ⇒ industry: 30.9%
 - ⇒ services: 58.4% (2011 est.)

Unemployment:

- 11.7% (2017 est.)
- ▶ 10.5% (2016 est.)

Labor force:

- ► 2.166 million
- note: excludes as many as 1 million foreign workers and refugees (2016 est.)
- Last Labor market survey from 2005
- Currently carried out as an ILO project

Labor force:

- 4.054 million (2017 est.)
 - ⇒ agriculture: 14.8%
 - ⇒ industry: 33.2%
 - ⇒ services: 51.7% (2014 est.)

Unemployment:

- ▶ 15.9% (2017 est.)
- ▶ 15.5% (2016 est.)

Labor force:

- 29.95 million (2017 est.)
 - ⇒ agriculture: 25.8%
 - ⇒ industry: 25.1%
 - ⇒ services: 49.1% (2015 est.)

Unemployment

- 11.9% (2017 est.)
- ▶ 12.7% (2016 est.)

N. M

Employment factors (FTE/MW)

	Install	Produce	O&M
Wind	0.98	4.7	0.3
PV	1.2	-	0.12
SWH	11	4	0.01
Hydro	3.5	1.5	1.28
			e e e e e e e e e e e e e e e e e e e

	Install	Produce	O&M
Wind	4.4	3.5	0.3
PV	2	5	0.12
SWH	3.7	3.8	-
Hydro	-	-	-

For comparison:

► Global (EREC/Greenpeace)

	Install	Produce	O&M
Wind	2.5	6.1	0.2
PV	11	6.9	0.3
SWH	7.	.4	
Hydro	6	1.5	0.3

	Install	Produce	O&M
Wind	3.6	-	0.28
PV	11		0.1
SWH		-	-
Hydro	7.5		1.38

Schloss

iWS mbH

Results – Tunisia: jobs under different scenarios

Scenario ER+ +

- 10% of systems (wind, PV, CSP) imported
- 24,700 jobs in 2018

Scenario ER+

- 85% of systems (wind, PV, CSP) imported
- > 10,500 jobs in 2021

Results Egypt – Total Employment

The main drivers are the expansion of wind energy and solar energy (SWH and PV). Wind energy will be reaching a conservative target of 5000 MW by 2022, PV of 3000 MW, SWH sees 5 million square meters installed. The number of energy efficiency projects is assumed to increase by 10 percent/a.

© 2018 GWS mbH

Results Egypt – Scenario Analysis: More Small Technologies

- Roof-top PV and solar water heaters are more labor intensive
- Decentralized installations spreads job opportunities to different regions
- More additional jobs than additional costs

Results Egypt – Scenario Analysis: More Local Content

- More local value from RE and EE while maintaining the same investment path
- Support for industrial clusters, SMEs, shift from assembling to producing

Results Lebanon: employment from PV 2018-2021

	2018	2019	2020	2021			
SCENARIO A: Optimistic							
DIRECT EMPLOYMENT	556	2.606	6.115	6.267			
Installation	550	2.574	6.025	6.118			
Operation & Maintenance	6	32	90	149			
INDIRECT EMPLOYMENT	641	5,114	12,202	12,627			
Installation	609	4,987	11,707	11,763			
Operation & Maintenance	32	127	496	864			
TOTAL EMPLOYMENT	1,197	7,720	18,317	18,894			
SC	ENARIO B: Con	servative					
DIRECT EMPLOYMENT	423	606	2759	4,619			
Installation	418	596	2725	4,545			
Operation & Maintenance	5	10	34	73			
INDIRECT EMPLOYMENT	493	971	5,313	9,073			
Installation	463	926	5,077	8,485			
Operation & Maintenance	30	45	236	588			
TOTAL EMPLOYMENT	917	1,577	8,072	13,692			
DIFFERENCE							
TOTAL EMPLOYMENT DIFFERENCE	280	6,143	10,246	5,202			

Results

- Renewable energy deployment will lead to additional employment in all countries analysed
- RE and energy efficiency can alleviate some problems from the respective power markets.
- ► However, often structural problems in the markets remain.
- Examples are:
 - ⇒ Back-up provision still considers RE as threat and not as chance (Lebanon)
 - ⇒ Industry sees RE only as consumers (Lebanon, Egypt)
 - ⇒ Grid development does not include RE (Egypt, Tunisia)

Conclusions

- Data based decision support is often underdeveloped in emerging economies and developing countries
- Tool with clear messages can support local institutions such as RCREEE, Ministries, UNDP-agencies
- Data collection is only possible with local expert support
- Data collection is essential: the countries differ immensely
- Data collection is essential: only local data create credibility
- Data analysis and diagrams trigger discussions

Future research: regionalize!

CONTACT PERSON

Thank you for your attention.

Ulrike Lehr

T +49 (0) 40933 - 280 E lehr@gws-os.com Head of division Energy and Climate

Maximilian Banning

T +49 (0) 541 40933 - 286 E banning@gws-os.com

www.gws-os.com

Gesellschaft für Wirtschaftliche Strukturforschung mbH Heinrichstr. 30 49080 Osnabrück Tel + 49 (0) 541 40933-XXX Fax + 49 (0) 541 40933-110 name @ gws-os.com

WWW.GWS-OS.COM / © GWS 2018

Data collection – template for RE

Concerned organization/source									
Technology*									
Year	Installed Capacity	Investments		Egyptian Direct Jobs					
		Local Share	Foreign share	Total No.	Permeant	Part-time			
2010									
2011									
2012									
2013									
2014									
2015									
2016									
2017									
	e table should be th from the following te		each of the	technologies	that your	organization			
Wind, PV, CSF	P, SWH, Biomass, and E	Biogas							

Data collection – templates – Example PV

	NREA							
PV Power plants								
			Investments		Egyptian Direct Jobs			
Year	Installed Capacity	Local Share	Foreign share \$	Total No.	Permanent	Part-time		
2015	10 MWp in Siwa		22.750 mio.	18	3*	15**		
2015	5 MWp in El Farafra		13.135 mio.	17	2*	15**		
2015	0.5 MWp in Darb El Arbeen		1.313,5 mio.	17	2*	15**		
2015	0.5 MWp in Abo Monkhar		1.313,5 mio.	17	2*	15**		
2016	6 MWp in Marsa Alam		12.747,512 mio.	17	2*	15**		
2016	5 MWp in Shalateen		10.622,926 mio.	17	2*	15**		
2016	2 MWp in Abo ramad		4.249,170 mio.	17	2*	15**		
2016	1 MWp in Halayeb		2.214,586 mio.	17	2*	15**		
2016	2.1 MWp off grid in Aswan, Qena, Souhag, Matrouh and Louxer		16.870 mio.	22	2*	20**		

- Lenzen M, Kanemoto K; Moran D, and Geschke A (2012) <u>Mapping the structure of the world economy</u>. *Environmental Science & Technology* 46(15) pp 8374–8381. <u>DOI: 10.1021/es300171x</u>. <u>Supplementary Information</u>
- Lenzen, M., Moran, D., Kanemoto, K., Geschke, A. (2013) <u>Building Eora: A Global Multi-regional Input-Output</u> <u>Database at High Country and Sector Resolution</u>. *Economic Systems Research*, 25:1, 20-49, <u>DOI:10.1080/09535314.2013.769938</u>