

Salzburg REFORM conference August 27 – 31, 2018

A Balance of 18 years EU ETS Wharf

Aviel Verbruggen University of Antwerp

www.avielverbruggen.be

At COP3 (Kyoto, Dec. 1997), the EU <u>reluctantly</u> accepted emissions trading as a climate policy instrument.

Soon, DG Environment minds were <u>reprogrammed</u>: *emissions trading markets would innovate mitigation solutions to save the climate*.

Spurred by <u>energy corporates</u> & neoclassical economists, the EC <u>freshmen</u> opened the EU ETS wharf.

From economics textbooks + superficial scan of the US SO₂ program, a too ambitious, simplistic <u>'cap-and-trade' market design emerged</u>.

However, free permits, fraud, rent skimming, absent innovation, ... spoiled the dream and spread confusion.

Economics & cost-benefit frame dominate

'Money makes the world go round'

□ Price everything – only what is priced, is relevant

- □ Based on aggregates/averages hides unequality, diversity
- Assumes unlimited substitutability hides irreversibility

□ Urgency of action & results

□ Atmosphere & Climate disruption is irreversible

□ No time for lenient experimentations

ETS debate is unwieldy

- □ Non-economic views neglected
- □ Facts obscured next phase will be better (remind atoms)
- □ This lecture addresses the <u>economics core</u> of ETS, i.e.:
 - * pricing GHG (carbon) emissions
 - * price induced innovation (IPCC WG3 IAM)

Lecture overview (+30 slides)

- 1. Introductory economics (sorry, but necessary) +2
- 2. Anatomy of EU ETS (economic instrument) +12
- **3.** Learning (US SO₂ policy; EU's Tradable Green Certificates) +3
- 4. Reality check on carbon prices +10
- 5. Evaluation & Future +3

6

2. Anatomy of ETS

Merriam Webster's Collegiate Dictionary:

Anatomy: 'the art of separating the parts of an organism in order to ascertain their position, relations, structure and function' (mostly, pictures support the descriptions).

An ETS holds 4 constituent parts:

- [i] Policy goals
- [ii] Costs of GHG abatement (mitigation, compliance)
- [iii] Carbon emissions prices
- [iv] Allocations of tradable emissions permits
- every part = range of options (within constraints)
- assemblage of particular options = ETS exemplar

Component [i] Two major policy goals for EU ETS

A-goal - Atmosphere

- = pursue Atmospheric stability and cleanness
 - > emitting (industrial) activities
 - > carbon emissions down 80-95%
 - > by the nearest date (before 2050)
 - + induce disruptive de-carbonizing innovations

++ higher carbon emissions prices as inducing force

II-goal – Profit / Protection of industries

- = maintain/expand EU's industrial activities
 - > businesses, employment
 - >> profits
 - + avoid 'carbon leakage'
 - ++ no € burdens on Energy-Intensive Trade-Exposed (EITE) industries

Are the two goals reconcilable?

2. Anatomy


```
2. Anatomy
```


10

^{2. Anatomy} Component [iii] Carbon emissions pricing

GHG Concentration in the atmosphere, every year adding a few ppm, due to the yearly GHG emissions Universiteit Antwerpen

GHG Emissions (ton)

2. Anatomy

Findings from Anatomy study

- . ETS exemplars depend on assembled selection of component options
- . Conflicting goals require different exemplars
- . EU ETS successful in protecting (serving) EU's large industries interests
- . High-price [*with high-cost for industry*] EU ETS exemplar is unlikely [*the more sticky MACs are*]

6

Characteristics of US SO₂ program

□ Single segment of acid pollution

- SO₂ from USA coal fired power stations, production tech fully known
- □ NOx regulated in separate segments

Leakage not an issue

Low abatement expenses

□ Mainly low-sulfur coal substituted for high-sulfur coal

□ Mature add-on technologies (scrubbers)

□ Lousy cap did not need advanced scrubbers

Rich regulatory bequest at the start in 1990

Sector regulated by state PUCs, coordinated by NARUC
 EPA since 1970: capable, diligent, informed, ...

□ Thin market <<< stringent EPA policy making

Free permits; 2.8% of cap auctioned + return of revenues
 Banking as extra flexibility

□ Few trade across non-affiliated companies

EU's Tradable Green Certificates

□ 1999:EC promotes TGC for pan-European RE support

Germany resisted and saved FIT support
 A few TGC were set-up: Frehsman Flanders exemplary

□ Salient attributes & results of TGC

Amalgamate all RE supplies {source x technology}
 Single price per certificate (= per MWh generated)
 Huge excessive profits (euphemism: 'windfalls')
 No technological innovation
 'Market' metamorphosed in ruling à la tête du client

Technology specific FIT support for solar PV + wind
 Affordable, fast, deep, tech. development success
 Economists: 'FIT expensive', 'perverse effects on ETS'

4. Reality check

Mission of Climate Policy Purpose of policy instruments (ETS): Deep De-Carbonization

Innovation is the magic key to * low-costing abatement, mitigation * new products, practices, institutions, ...

ETS 'price induced innovation' credo =>
 >Hammering on high carbon prices
>Shifts in Marginal Abatement Cost curves

We investigate Carbon prices & MAC shifts

Carbon price or prices

- Holy grail of neo-classical (neoliberal) economists
 Either 'harmonized global CO₂-eq levy/taks rate' (fixed)
 Or: 'uniform ETS permit prices' (volatile)
- 'Money makes the world go round' affects all people
 Maximize Benefits (revenues) + Minimize Costs (expenses)
 Self-interest keeps economic order (≈ gravity in physics)
 Movement = overcoming gravity & short-near self-interest
- Confusion price (€/unit) # bill (quantity of €)
 If one unit (house, car): price = bill
 If many units (kWh, ton CO₂): price << bill
 Real economic decisions are based on bills, not on prices (see: 'capital budgeting' for business investments)

```
4. Reality check
```


Time (hours)

Universiteit Antwerpen

Х

0

EU ETS in practice

Free Permits up to 'benchmarked' emission levels
 Permit price = penalty on emissions beyond
 No trade in permits, but trade in penalties

ETS advocates' discourse: 'Tail wags Dog'
 ♦ ⇔Marginal is derivative of total (not the reverse)
 ♦ ⇔ MC-pricing optimal IFF <u>all</u> submarginal units <u>also</u> pay the system marginal cost

emissions

emissions

emissions

Dubious ETS Carbon Prices

ETS permit prices

- □ Fringe price ≠ marginal price
- ETS unique selling point 'uniform carbon price sets MAC_i equal = minimum total AC' is hollow
- Phase 1 & 2 [2005-2012]: 98% of permits free + banking into Phase 3: 2.3 billion permits hoarded + windfalls, fraud
- □ Phase 3: auction for power generators (prices €5 to €8) + EITE activities get free permits (bill = 0)

□ Who pays the ETS bills?

- □ Electricity consumers are charged the ETS bills
- However, governments (UK, Germany, Belgium, ...) reimburse EITE 75-85% the ETS driven costs on their electricity bills
- □ Finally: non-ETS electricity consumers pay the ETS
- A considerable price increase = huge profits on the hoarded permit stock in 2018, before the MSR starts in 2019

ETS posted prices 24 August 2017-2018

(Source: Market Insider, 24 August 2018)

Significant increase since last year, from €6 to €20/permit

ETS helpful for climate policy?

Untill today?

□ After 2005: RWE, EON, GDF-SUEZ started construction of large scale coal plants in the Netherlands, Germany, ...

ETS has not pulled decarbonization innovations

Almost 20 precious years have been irrevocably lost, causing more irreversible losses to the globe's climate

□ Phase 4 [2020-2030]

In 2019: metamorphosis from cap-and-trade to a collar (bottom & ceiling) price control (MSR)

Otherwise, no major changes

One more decade lost?

Can ETS survive high permit prices?

Ves

- When roll-of mechanisms persist: the non-ETS electricity consumers pay the bill
- However, pivotal role of electric power corporates may be undermined by fast growth in solar & wind supplies

No, when prices are charged on industrial emissions
 Industries cannot, will not, pay twice: a yearly permits bill + investments in de-carbonizing innovations, i.e.
 price induced innovation is mostly fiction; the more fictituous, the more sticky the MAC curves are
 Carbon leakage is then likely to occur
 More likely is that industry will quit (blow-up) the ETS

Has GHG emissions trading a future?

Prerequisites:

*'Diversity & Segmented' substitutes for 'Amalgamation & Uniform' in handling emission sources & applying economic instruments.
*Submit Policies & Instruments to Sustainability Assessment
*Accord with stimuli for decarbonization innovations, which are more important than market mechanisms
*Revise belief in uniform price induced innovation

Yes, GHG emissions trading may play a role
 When organized per industrial sector / subsector
 On a global scale, e.g, all cement plants (> some size) to preclude leakage
 Foster flexibility above permit trade

The EU ETS being a scam, generates two feelings:

- **Relief**: better climate policy is feasible after breaking the deception
- **Responsibility**: find new effective, efficient and fair policies