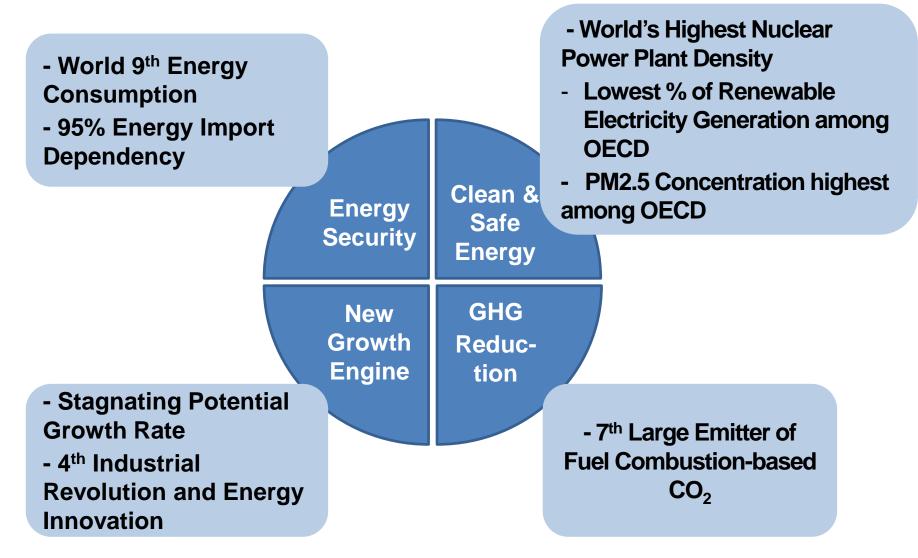
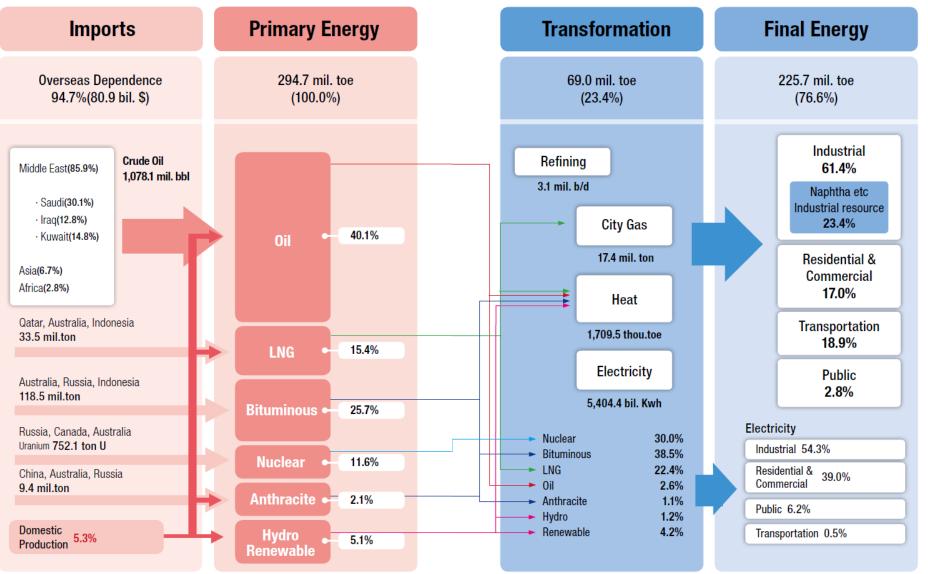
The 22nd REFORM Group Meeting Energy Democracy and Climate Change Policy August 28, 2018 Salzburg, Austria

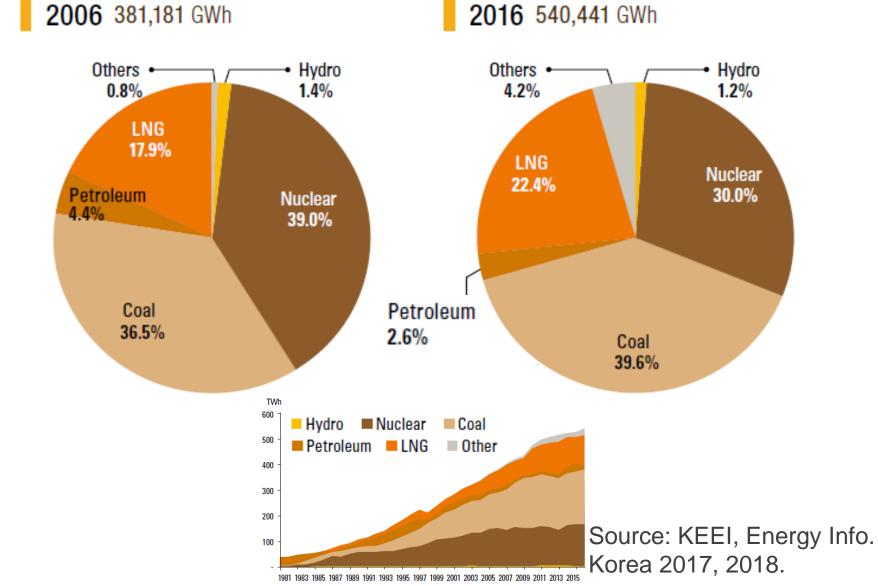

Energy Transition and Democracy in Korea

HONG, Jong Ho and YUN, Sun-Jin Seoul National University & Korea Energy Transition Forum

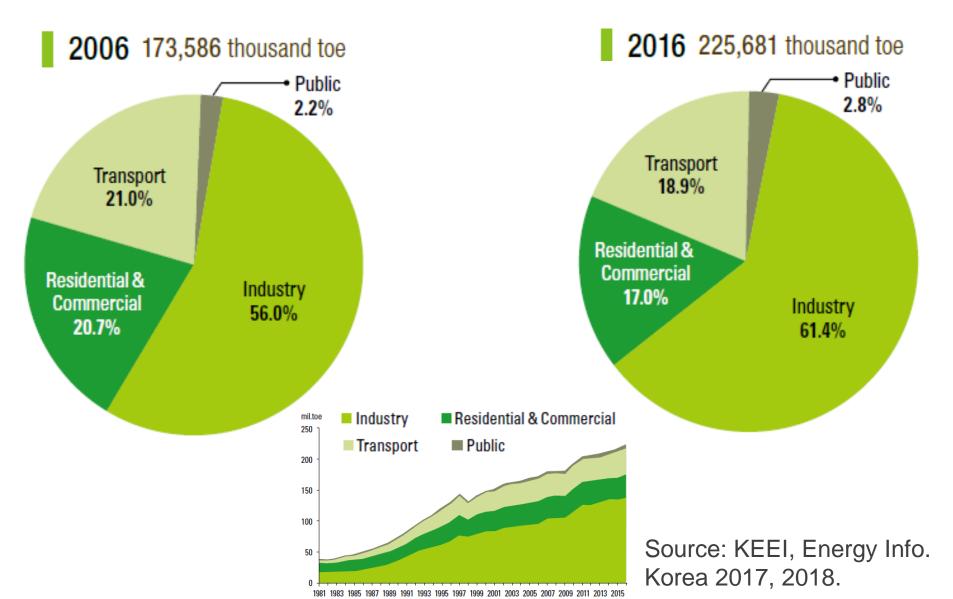

Contents

- 1. The Background of Energy Transition in South Korea
- 2. The Process & Outcome of Public Engagement in Nuclear Energy Policy
- **3. Current Energy Transition Issues**
- 4. Challenges & Opportunities

Major Issues in Energy Field in South Korea

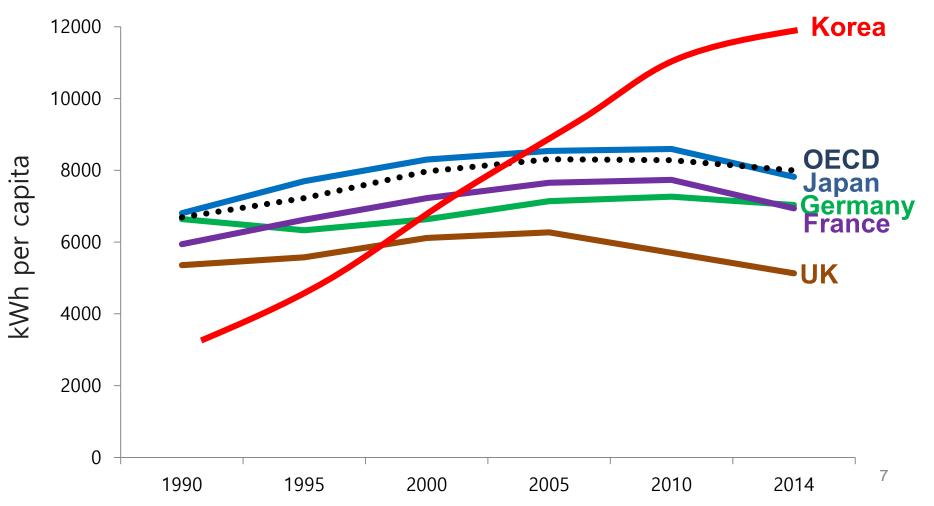


Energy Balance Flow (2016)



Source: KEEI, Energy Info. Korea 2017, 2018.

Electric Power Generation by Energy Source


Final Energy Consumption by Sector

1. The Background of Energy Transition in South Korea

S. Korea is an electricity-intensive society

 Per capita electricity consumption of major OECD Member states

Korea, a big CO₂ Emitter & Energy Consumer

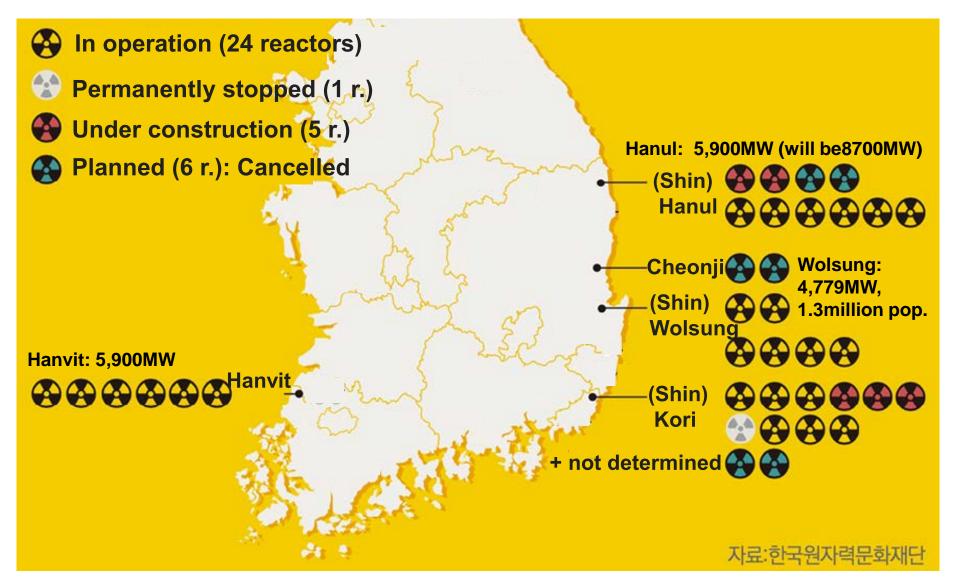
Ran king	Country	CO ₂ Emissions from fuel combustion		Population		GDP-PPF	Primary Energy Supply		
King		MtCO ₂	%	Million	%	Billion US \$ in year 2005	%	ΜΤΟΕ	%
1	China	9,087.1	28.1	1,364.3	18.8	16,841.0	16.6	3,051.5	22.3
2	USA	5,176.2	16.0	319.2	4.4	16,156.6	15.9	2,216.2	16.2
3	India	2,019.7	6.2	1,295.3	17.9	6,902.1	6.8	824.7	6.0
4	Russia	1,467.6	4.5	143.8	2.0	3,219.8	3.2	710.9	5.2
5	Japan	1,188.6	3.7	127.1	1.8	4,437.1	4.4	441.7	3.2
6	Germany	723.3	2.2	81.0	1.1	3,438.0	3.4	306.1	2.2
7	Korea	567.8	1.8	50.4	0.7	1,697.1	1.7	268.4	2.0
8	Iran	556.1	1.7	78.1	1.1	1,263.8	1.2	237.1	1.7
9	Canada	554.8	1.7	35.5	0.5	1,497.8	1.5	279.9	2.0
10	South Africa	437.4	1.4	54.2	0.7	658.7	0.6	147.0	1.1

Source: IEA, 2016, Key World Energy Statistics 2016 (Data for 2014)

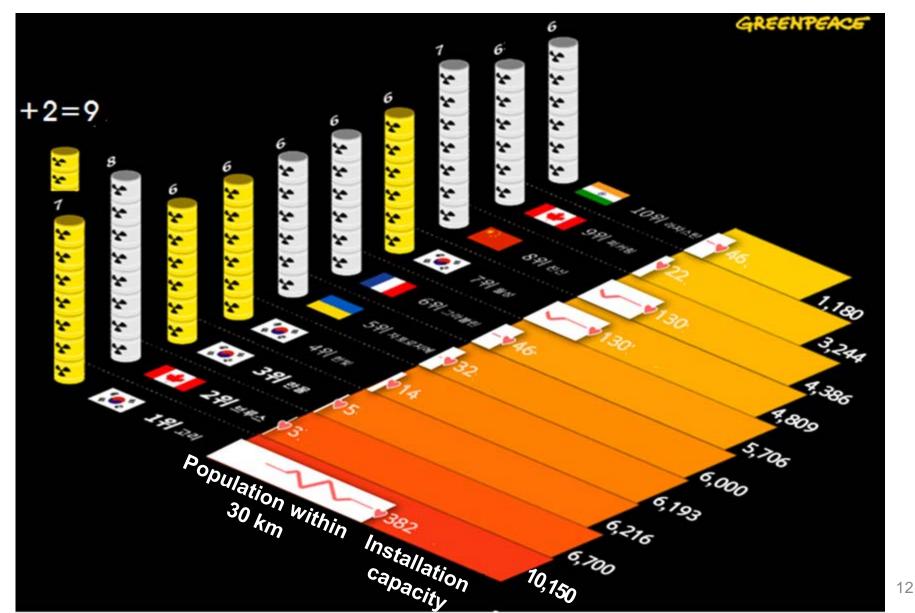
Comparison of Nuclear Power Status

	1	2	3	4	5	6	World
Installation	USA	France	Japan	Russia	China	Korea	
Capacity (GWe)	99.5	63.1	40.5	25.3	31.6	23.0	391.7
Number of	USA	France	Japan	Russia	China	Korea	440
Reactors	99	58	43	36	35	25	448
Reactors under	China	Russia	Korea	USA	India	UAE	62.0
Construction (GW (Number))	22.6(20)	5.9(7)	5.6(4)	5.0(4)	3.3(5)	4.2(3)	(58)
Nuclear Power	USA	France	Russia	Canada	China	Korea	~
Generation (2015, TWh)	798	419	183	161	161	157	2,441
Proportion of	France	Ukraine	Slovakia	Sweden	Swiss	Korea	
Nuclear Power Generation (2015, %)	76.1	56.5	55.9	34.3	33.5	31.7	11.5
Nuclear Density	Korea	Belgium	Taiwan	Japan	France	Swiss	-
(kW/km²)	219.7	194.3	139.8	117.0	115.3	78.8	-

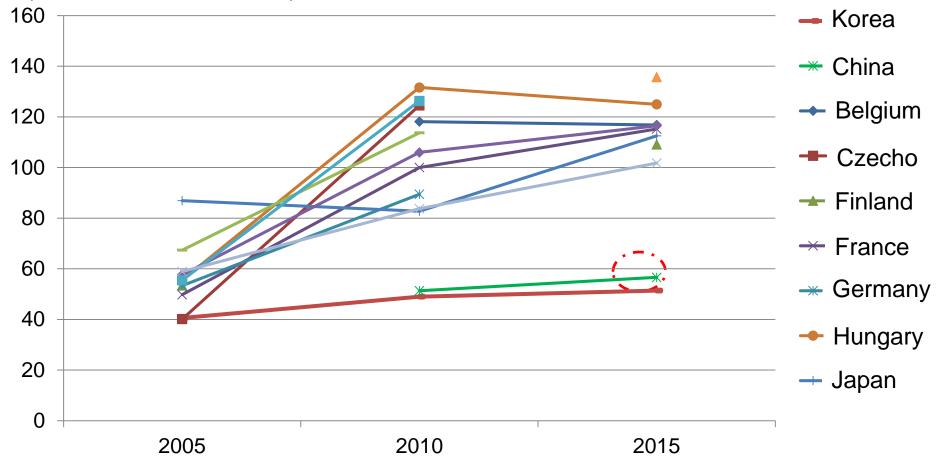
Source: IEA, 2016, Key World Energy Statistics 2016(Data for 2014)


Top of the World in terms of Nuclear Density

Number of Reactors:


Korea with the highest density

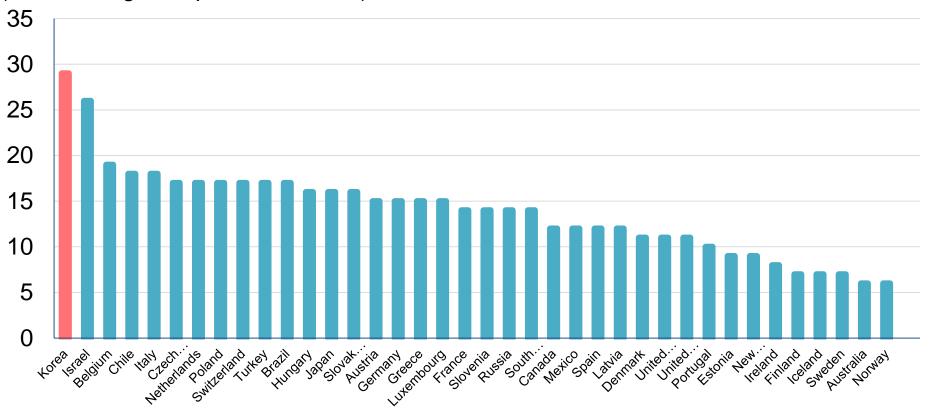
Condensed Location of Multiple Reactors


With Shin-Kori 5 & 6: the densest site

Nuclear's Levelized Cost of Electricity (LCOE)

• Nuclear LCOE in Korea is much lower than other countries

(Unit: \$/MWh, 2013 USD)

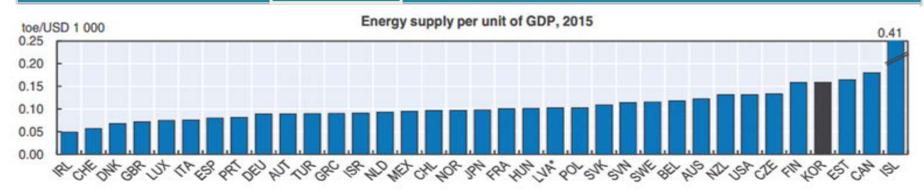


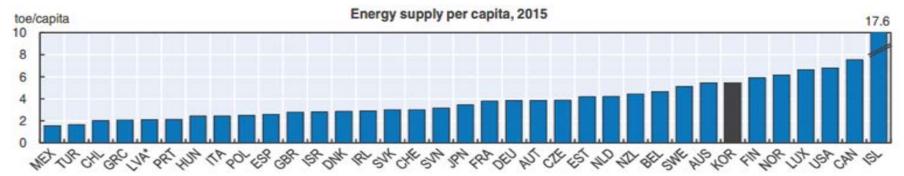
Source: IEA(2015), [Projected Costs of Generating Electricity

PM2.5 Concentration by Country

• Korea is the highest among OECD countries

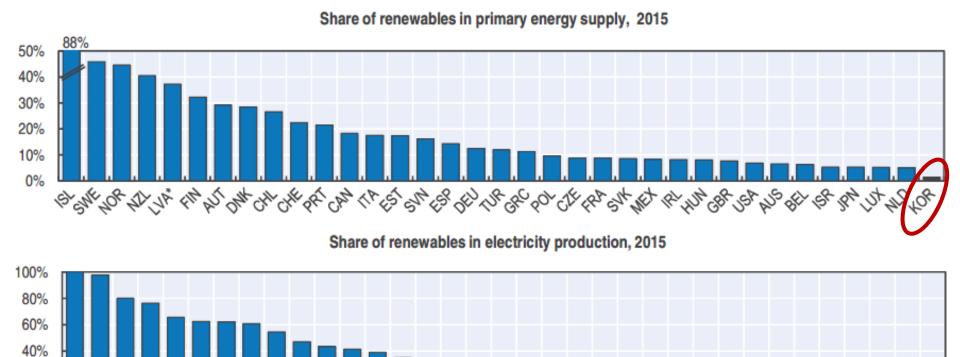
(Unit: Micrograms per cubic meter)




Data: OECD(2016), Better Life Index The World Bank(2016), http://data.worldbank.org/indicator/

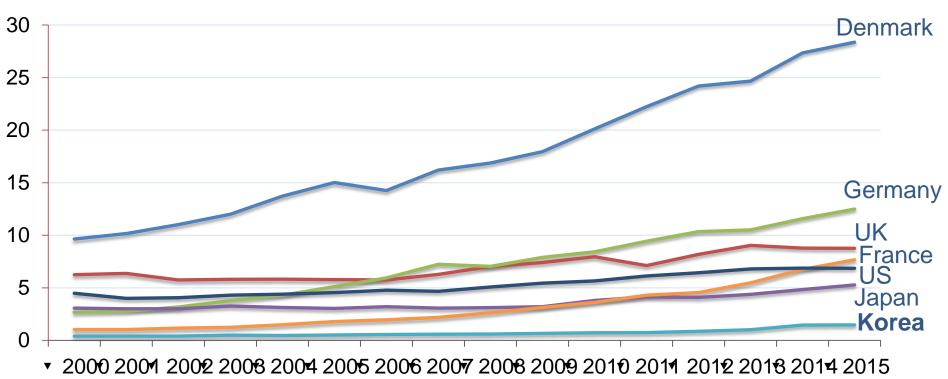
Energy Intensity

• Korea's Energy Intensity is 31/34 among OECD Countries (2013): More than 2 times compared to U.K., Japan, Germany, and EU Countries


	Korea	Japan	Germany	U.K.	EU
Energy Intensity	0.22	0.095	0.100	0.07	0.107
(toe/Thousand USD)	(100)	(43)	(45)	(34)	(49)

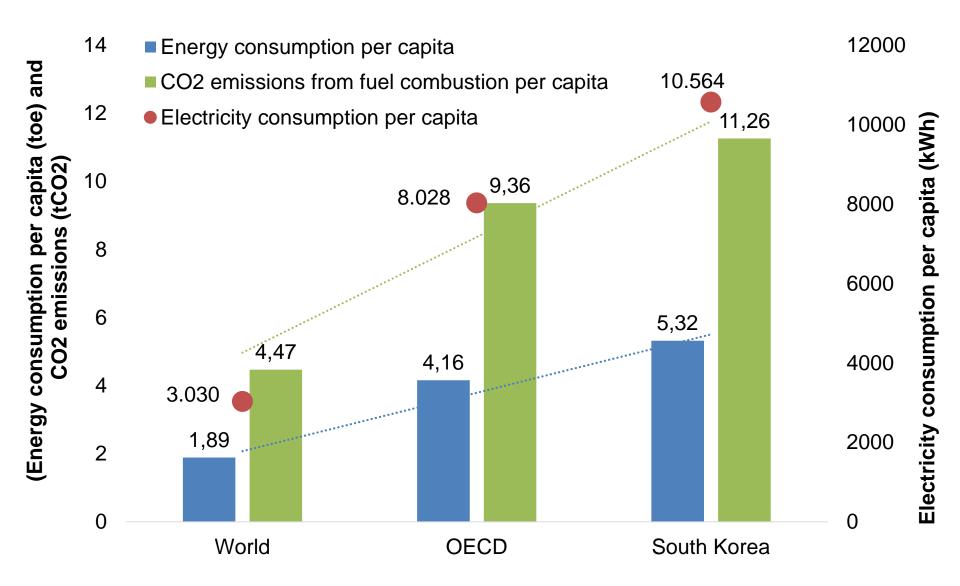
The Status of Renewables

20% 0%

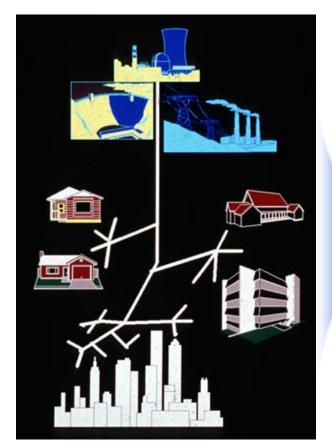


Source: OECD Environmental Performance Reviews: Korea 2017

Trend of Renewable Energy Supply


Lowest among OECD countries

(Unit: %)



Data: OECD Data, Renewable Energy

Comparative Energy Consumption of Korea

Problems of the Conventional Energy System

The Centralized Supply-oriented Fossil Fuel- and Nuclear-based Energy System (94.9% of TPES; 94.6% of electricity energy source)

Increasing energy consumption

Climate change

Fine dust

Deepened nuclear risk (normal accident/spent fuel)

> Environmental injustice/Social gap Social conflicts

Contents

- 1. The Background of Energy Transition in South Korea
- 2. The Process & Outcome of Public Engagement in Nuclear Energy Policy
- **3. Current Energy Transition Issues**
- 4. Challenges & Opportunities

Energy-related Presidential Pledges of Mr. Moon

17. Safe & Healthy Korea The state will take responsibility for People's life

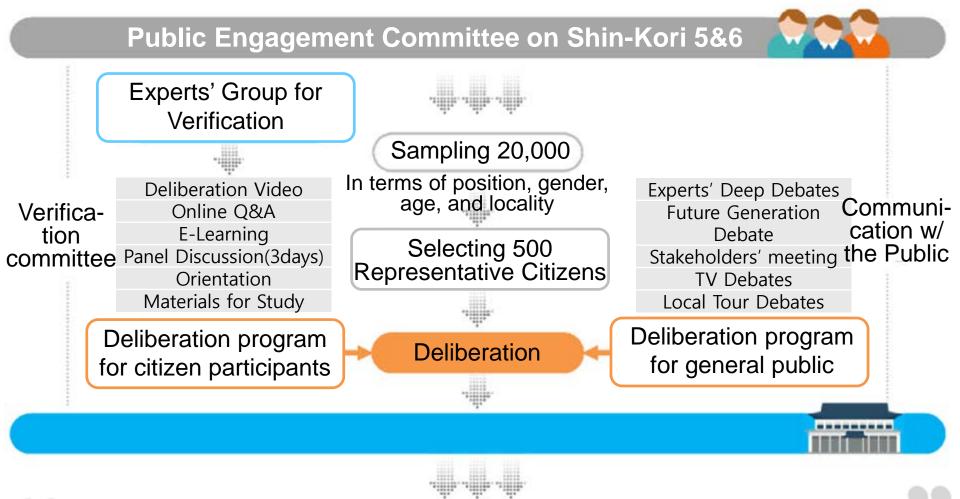
- Establishment of Nuclear Zero Post-Nuclear State after 40 years
 - Closure of aged nuclear power plants and stopping new reactors' construction
 - Accomplishment of 20% of renewable energy by 2030
- 30% Reduction of Fine Dust within Moon's Tenure
 - Stopping construction of new coalfired power plants and closure of aged ones
 - Temporary Shut-down of coal-fired power plants during Spring season

President Moon pledged Nuclear-free Society

"The shutdown of KORI 1 is the beginning of a nuclear-free energy country, a paradigm shift for a safer Korea" (June 19, 2017)

- Nullifying construction of new nuclear power plants under preparation
- Prohibiting lifetime extension and closure of extended Wolsung 1
- Deriving social consensus on construction of Shingori 5 and 6 with consideration on safety, completion rate, given investment, compensation costs, electricity reserved margin and so on.

Energy-related Policy Tasks among 100 Ones


National Vision	A Nation of People, a Just Republic of Korea	
	A Government of the People	
	An Economy Pursuing Co-Prosperity	
Five Main Policy Goals	A Nation Taking Responsibility for Individual Lives	
	Well-balanced Development Across Every Region	
	The Korean Peninsula of Peace and Prosperity	

- Safe Society Keeping People's Security and Life
 - Creation of Clean Air Quality without Worry about Fine Dust
 - Energy Transition through Post-Nuclear Policy toward a safe and clean energy society
 - Establishment of faithful implementation system of New Climate Regime

The Public Engagement Process on Shin-Kori 5 & 6

- Presidential Pledge: Stop of the construction
- Celebration Speech in the Permanent Shut-down of Kori 1 on June 19, 2017: Suggestion of decision based on social consensus
- The President moderated cabinet meeting on June 27, 2017: Decision on Public Engagement Process
- Suspension decision on the construction on June, 14, 2017
- Establishment of Public Engagement Committee on Shin-Kori 5 & 6 on July 24, 2017
- Activities of the Citizen Representative Group from Sep. 16 to Oct. 15, 2017
- Submission of the Outcome of public engagement process on Oct. 20, 2017

Public Engagement Process

Final decision by the government based on the people's will

Source: Report of the PEC, 2017

Recommendation of the PEC

- Resuming suspended construction of Shin-Kori 5&6
- Promoting energy policy to make the share of nuclear power reduced
- Supplementary recommendations needs to be implemented as soon as possible

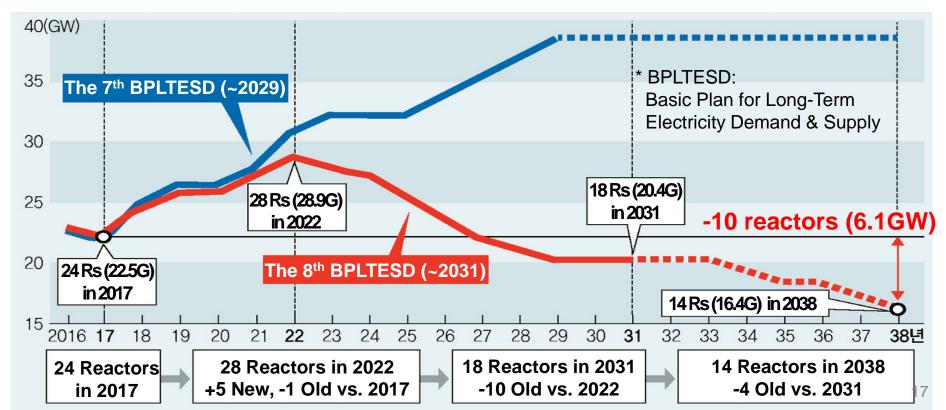
Distribution of Opinions

Source: Report of the PEC, 2017

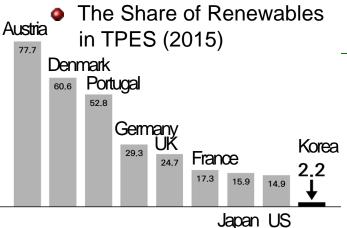
category	Resı	ıme	Stop	category		Res	sume	Stop	
Male	66	.3	33.7	Seoul			5	7.4	42.6
Female	52	.7	47.3		Incheon·Gyeo	nggi	5	8.6	41.4
20s(+19)	56	.8	43.2	Daejeon·Chungcheong			6	5.8	34.2
30s	52	.3	47.7	Gwangju·Jeolla·Jeju			4	6.1	54.9
40s	45	.3	54.7	Dae	gu∙Gangwon∙G	yeongbuk	6	8.7	31.3
50s	60	.5	39.5	Bu	san∙Ulsan∙Gye	ongnam	6	4.7	35.3
60s+	77	.3	22.5	Total			5	9.5	40.5
	Share of		Reduce		Maintain	Enlarge	9	Don't	know
nuclear power			53.2%		35.5%	35.5% 9.7%		1.	6%

The Moon Government's Position on PEC's Recommendation

Resuming Construction of Shin-Kori 5&6 + Confirming a Road map for Energy Transition


- Pushing for follow-up measures and complementary actions: Strengthening nuclear safety standard, expanding investment in renewable energy, preparing solutions for spent-fuel of nuclear power plants
- Strengthening nuclear safety standards: Strengthening safety evaluation of multiple reactors, Strengthening earthquake proof standard, Eradicating nuclear corruption
- Energy transition: Transition toward safe and clean energy, Scrapping the new reactor construction plan, nuclear-phasing out through prohibiting life-time extension of aged reactors, expanding the share of renewables to 20% by 2030

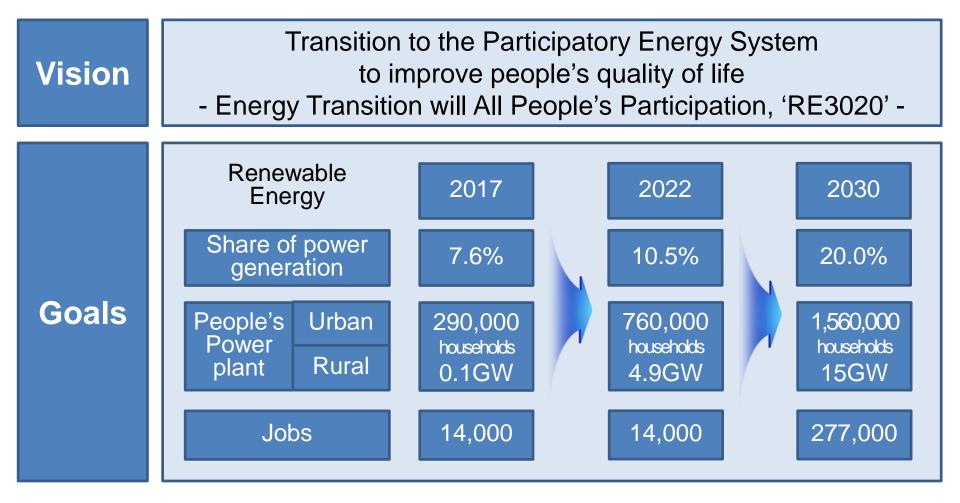
Contents


- 1. The Background of Energy Transition in South Korea
- 2. The Process & Outcome of Public Engagement in Nuclear Energy Policy
- 3. Current Energy Transition Issues
- 4. Challenges & Opportunities

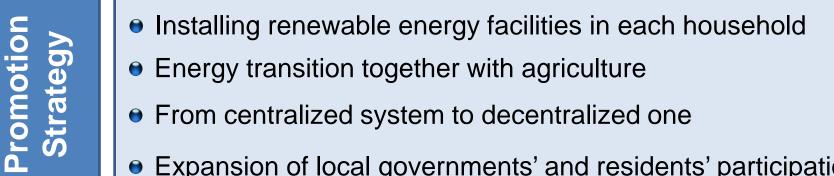
The Roadmap of Nuclear Phase-out

	#	Capacity	Object	Project
New Reactor	6	8.8GW	Shin-Hanul 3·4, Cheonji 1·2, New 1·2	Nullification
Old Reactor	14		14 reactors by 2038(Kori 2~4, Wolsung 2~4, Hanbit 1~4, Hanul 1~4)	No lifetime extension
Wolsong 1	1	0.7GW	Wolsong 1	Early closure

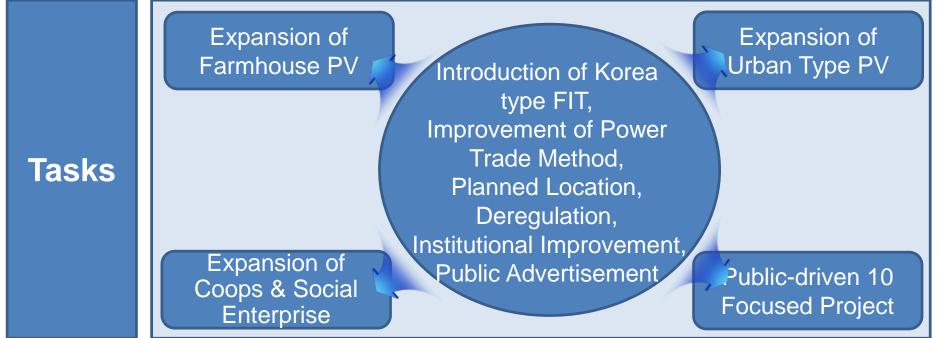
The Current Status of New & Renewables in Korea


New & Renewable Energy in Korea (2016)

	Installed Capa	acity (GW)	Power Genera	ation (TWh)
Total	110.4 GW	100.0%	561.7 TWh	100.0%
New & Renewables	13.3 GW	12.0%	39.1 TWh	6.95%

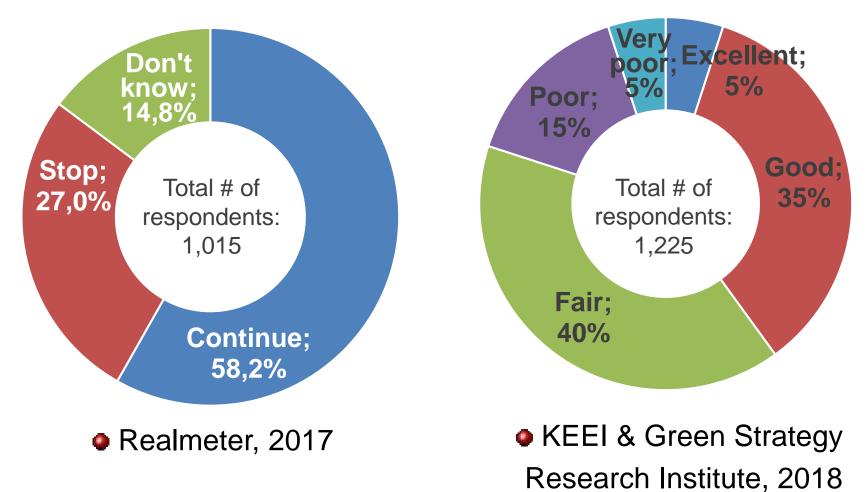

Comparison of the Status of Renewable Energy

	S. Korea	Germany	U.K.	Japan
Share of power generation in 2015 (PV & Wind)	6.41%	29.2%	24.8%	16.0%
	(0.95%)	(18.40%)	(14.23%)	(3.96%)
Employment in 2016	13,750	334,000	110,000	313,000
(Share of population)	(0.027%)	(0.4%)	(0.17%)	(0.25%)
New installation (2011 to 2015)	6.3GW	42.3GW	21.0GW	31.8GW
(PV & Wind)	(3.5GW)	(39.8GW)	(18.0GW)	(31.1GW)


Vision & Goals of Renewable E Expansion

Promotion Strategy & Implementation Plan

- Energy transition together with agriculture
- From centralized system to decentralized one
- Expansion of local governments' and residents' participation


Policy Goal of Renewable Energy 2030

○ 산업통상자원부

			Wi	nd					
		PV	On Shore	Off Shore	Hydro	Bio	Waste	Marine	Total
	New (2018~30)	30.8	4.6	12.0	0.3	1.0	-	-	48.7
Installed Capacity (GW)	Existing (~2017)	5.7	1.2	0.03	1.8	2.3	3.8	0.3	15.1
(GVV)	Total (share, %)	36.5 (57.3)	5.7 (9.0)	12.0 (18.8)	2.1 (3.3)	3.2 (5.2)	3.8 (6.0)	0.3 (0.4)	63.8 (100.0)
Power Generation (TWh) (Share, %)		46.1 (34.9)	11.1 (8.4)	31.5 (23.8)	4.0 (3.1)	16.2 (12.2)	22.8 (17.3)	0.5 (0.4)	132.3 (100.0)

Public Opinion on Energy Transition Policy

Contents

- 1. The Background of Energy Transition in South Korea
- 2. The Process & Outcome of Public Engagement in Nuclear Energy Policy
- **3. Current Energy Transition Issues**
- 4. Challenges & Opportunities

Diversification of Anti (Post)-Nuclear and Energy Transition Movements' Participants

Local residents Near nuclear power facilities + Environmental NGOs

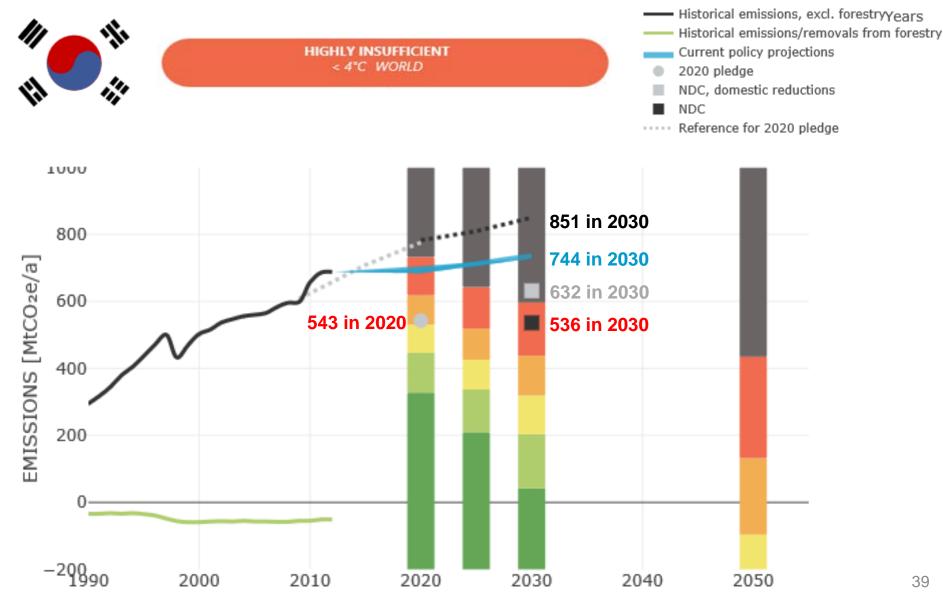
Local Residents **Environmental NGOs** Experts (Professors, Lawyers, Medical Doctors) Politicians Local Governments Cooperatives Educational Org. **Religious Groups** Peace Org.

Before 3.11

After 3.11

Diversified Anti (Post)-Nuclear and Energy Transition Movements' Objects & Methods

	Before 3.11	After 3.11
Objects	 Construction of NPP Construction of Radioactive Waste Disposal Facility Compensation 	 Construction of NPP Power Saving Plants Closure of aged NPP Construction of High-Voltage Transmission Lines Radioactivity in Living Environment (Foods and Space)
Methods	 Demonstrations Campaigns Issuing Statements 	 Alternative Energy Scenarios Renewable Energy Farmers Citizens' Energy Cooperatives Education: Post-Nuclear School Post-Nuclear Lawsuits Rejection against Pro-Nuclear Politicians Changes of Daily Life


7

Increasing Tension and Conflicts between Energy Transition Advocacy Group vs. Anti-ET

Environmental & **Civil Movement Groups Energy Transition Forum** Local Energy Transition Forum **Rural Energy Transition** Forum **Energy Coops** xperts' Group (Professo awyers, and Medic Doctors)

Nuclear Academia, Trade Union of Nuclearrelated Industries, Governmental Officials, Nuclear Power Plant Construction Companies, Conservative & Business Newspapers

Climate Action Tracker's Evaluation

Climate Change Performance Index (CCPI)

Rank	Country	Score**	Rank	Country	Score**	
- L*	-	-	31.	Slovenia	50.54	
2.	-	-	32.	Belgium	49.60	
3.	-	-	33.	New Zealand	49.57	
4.	Sweden	74.32	34.	Netherlands	49.49	
5.	Lithuania	69.20	35.	Austria	49.49	
6.	Morocco	68.22	36.	Thailand	49.07	
7.	Norway	67.99	37.	Indonesia	48.94	
8.	United Kingdom	66.79	38.	Spain	48.19	
9.	Finland	66.55	39.	Greece	47.86	
10.	Latvia	63.02	40.	Poland	46.53	
11.	Malta	61.87	41.	China	45.84	
12.	Switzerland	61.20	42.	Bulgaria	45.35	
13.	Croatia	61.19	43.	Czech Republic	45.13	
14.	India	60.02	44.	Hungary	44.00	
15.	France	59.80	45.	Algeria	43.61	
16.	Italy	59.65	46.	Argentina	41.21	
17.	Denmark	59.49	47.	Turkey	41.02	
18.	Portugal	59.16	48.	South Africa	40.61	
19.	Brazil	57.86	49.	Ireland	38.74	Index Categories
20.	Ukraine	57.49	50.	Japan	35.76	GHG Emissions
21.	European Union (28)	56.89	51.	Canada	33.98	(40% weighting)
22.	Germany	56.58	52.	Malaysia	32.61	Renewable Energy
23.	Belarus	56.38	53.	Russian Federation	29.85	(20% weighting)
24.	Slovak Republic	56.04	54.	Chinese Taipei	29.43	
25.	Luxembourg	55.54	55.	Kazakhstan	28.17	Energy Use (20% weighting)
26.	Romania	55.32	56.	United States	25.86	Climate Policy
27.	Mexico	54.77	57.	Australia	25.03	(20% weighting)
28.	Egypt	54.02	58.	Republic of Korea	25.01	
29.	Cyprus	52.29	59.	Islamic Republic of Iran	23.05	
30.	Estonia	52.02	60.	Saudi Arabia	11.20	
		-				

Rating

South Korea, along with Saudi Arabia, Islamic Republic of Iran, Australia and the United States, forms the bottom five of CCPI classification, scoring low or very low across almost all categories

Opportunities and Challenges

Strong policy will of Supply-oriented the Moon government energy policy Momentum of **Diverse transition** conventional experiments in energy system local areas Short-term Opportunities Increase of Challenges economical climate disaster efficiency & earthquake risk orientation Increase of Lower citizens' Acceptance awareness & of RE Power actions Facilities Renewable energy Cheap electricity technology development charge Lack of institutional Effectuation of the Paris Agreement & Global & financial support trend of energy transition

5. 에너지 전환을 위한 도전과 과제

WWF's Suggestion for Korea's 2050 Energy Vision

REPUBLIC OF KOREA 2050 ENERGY STRATEGY FOR A SUSTAINABLE FUTURE

Korea Energy Vision 2050

BUSINESS As usual

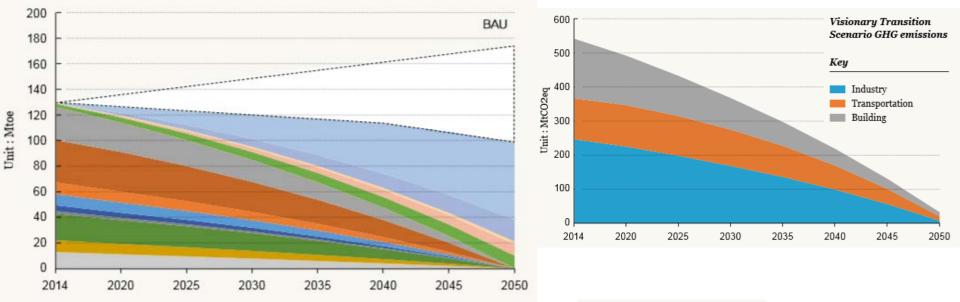
- Continuation of current policies and trends
- <10% energy supplied by renewable energy

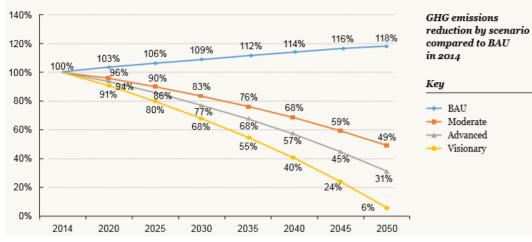
MODERATE TRANSITION

- 7% reduction in demand compared to 2014 levels
- 45% energy supplied by renewable energy

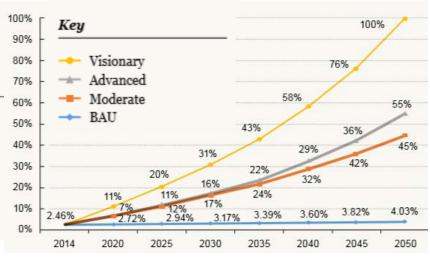
ADVANCED TRANSITION

- 24% reduction in demand compared to 2014 levels
 55% energy supplied
- by renewable energy


- VISIONARY TRANSITION
- 24% reduction in demand compared to 2014 levels
- 100% energy supplied by renewable energy



REPORT REPORT 2017


5. 에너지 전환을 위한 도전과 과제

WWF's Suggestion for Korea's 2050 Energy Vision

Proportion of renewable energy by scenario

22nd REFORM Group Meeting Energy Democracy and Climate Change Policy August 28, 2018 Salzburg, Austria

THANK YOU!

HONG, Jong Ho and YUN, Sun-Jin Seoul National University