# A Green New Deal (Green Recovery) Plan for Japan and its Economic Benefits

Oct 4, 2022

**ASUKA Jusen** 

**Tohoku Univ., Japan** 

asukajusen@gmail.com

## CO<sub>2</sub> Emission Reduction Target (compared with 1990)



### **Coal power transition ranking**

#### 2 March 2021



### Proportion of the renewable electricity (1990-2020)



Source: British Petroleum (2021)



Source: Research group on the energy transition for the future (2021)

## Our alternative energy mix target proposal (GR strategy)



Source: Research group on the energy transition for the future (2021)

## CO2 emission reductions under GR Strategy



### Investments needed for each sector

| Ind.              |                                                           | Investmenta  | Ratio of       | Accum. energycost | Jobscreated | Jobs created   | In 2030               |
|-------------------|-----------------------------------------------------------|--------------|----------------|-------------------|-------------|----------------|-----------------------|
|                   | Types                                                     | mount        | Private/pub.   | reduction         | by 2030     | per investment | CO₂red.               |
|                   |                                                           | to 2030 [TY] | expenditure    | by 2050 (TY)      | [10000/year | [#-yr/100 MY]  | [Mt-CO <sub>2</sub> ] |
| Power             | 1. Renew. power plants                                    | 29.3         | Mainly private | 86.3              | 285         | 9.7            | 360                   |
|                   | 2. Power grids                                            | 16.0         | Mainly public  |                   | 287         | 17.9           |                       |
|                   | 3. Heat supply network                                    | 6.0          | Mainly public  |                   | 108         | 18.0           | 32                    |
| Industry Business | 4. Power usage at raw materials manufacturing             | 18.5         | Mainly private | 23.1              | 179         | 9.7            | 58                    |
|                   | 5. Power used at non-                                     | 7.3          | Mainly private | 14.6              | 62          | 8.5            | 21                    |
|                   | material ind.                                             | 17.8         | Mainly private | 35.6              | 128         | 7.2            | 45                    |
|                   | 6. Power for machines                                     |              |                |                   |             |                |                       |
|                   | 7. Heat for insul. bldg. and zero emissions               | 16.8         | Mainly private | 42.1              | 275         | 16.3           | 28                    |
|                   | 8. Power for home                                         | 13.3         | Mainly private | 26.7              | 96          | 7.2            | 20                    |
| Household         | appl. & machines                                          | 13.3         | wanny private  | 20.7              | 50          | 7.2            |                       |
|                   | 9a. Heat for bldg insl.<br>and zero emissionhouses        | 15.2         | Mainly private | 30.3              | 267         | 17.6           | 28                    |
|                   | 9b. Heat for public housing with insl. and zero emissions | 1.7          | Mainly public  | 3.4               | 30          | 17.6           |                       |
| Transportation    | 10. Fuel eff. electriccars, taxis, buses                  | 20.4         | Mainly private | 57.6              | 183         | 9.0            | 81                    |
|                   | 11. Fuel eff. electric trucks                             | 11.2         | Mainly private | 35.5              | 119         | 10.6           | 38                    |
|                   | 12. Higher efficiency rail, ships, airplanes              | 1.5          | Mainly private | 3.0               | 10          | 6.7            | 3                     |
|                   | 13. Transport infla.                                      | 9.4          | Mainly public  |                   | 167         | 17.8           | 3                     |
| Sub total         |                                                           | 185          |                |                   | 2196        | 11.9           | 714                   |
|                   | Incl. public funds                                        | 33           |                |                   | 562         | 17.0           |                       |
| HR                | 14. Experts support,                                      | 13           | Mainly public  | 358               | 251         | 19.0           |                       |
| In fra            | training 15. Smooth transfer of laborers                  | 5            | Mainly public  |                   | 97          | 20.6           |                       |
| Sub total         |                                                           | 18           |                |                   | 348         | 39.7           |                       |
| Total             |                                                           | 202          |                | 3 58              | 2544        | 12.6           | 714                   |
|                   | Incl. public funds                                        | 51           |                |                   | 910         | 17.8           |                       |

## Investment needed for the energy transition with GR is much smaller than the reduction of utility expense



### Positive impacts of GR strategy

- Investment: Accumulated total of 202 tril. Japanese Yen (1.2 trill. USD) by 2030 (Private sector: 151 tril. JPY, public sector: 51 tril. JPY), and 340 tril. JPY by 2050
- Economic effects: 205 tril. JPY by 2030 (Increase from official GDP estimates)
- Job creation: 25.44 million jobs-year by 2030 (Maintain 2.54 million jobs/yr for10 years)
- Energy cost reduction:358 tril. JPY (accum.) by 2030 (500 tril. JPY accumulated by 2050)

## Positive impacts of GR strategy (cont'd)

- Fossil fuel import reduction: 51.7 trillion JPY (40 billion USD) accumulated by 2030
- CO<sub>2</sub> emissions:55% reduction from 1990 level by 2030 (61% from 2013 level), and 93% reduction from 1990 level by 2050 (with existing technologies only, but 100% reduction with the use of new technologies)
- Air pollution deaths avoided: Total 2,920 deaths from exposure to PM2.5 avoided by 2030

### Big CO<sub>2</sub> emitters in Japan: Employment and GDP contribution are not that big

- Employment of the 6 major CO<sub>2</sub> emitting industries (power, iron and steel, cement, chemicals, oil refinery, and paper manufacturing) is estimated about 150 thousands (GDP contribution is less than 1%)
- Employment of the coal power stations is about 3 thousands (GDP contribution is 0.04%)
- Employment of the nuclear industry is about 50 thousands
- Employment of the renewable energy industry is estimated about 280 thousands (IRENA 2021)

### Image of the just transition in Japan

Newly employed from others in Japan and new graduates





Current jobs in renewables (about 270000)

Jobs created by energy shifts, about 25.44 M till 2030 (2.54 M/year for 10 years)

Details of newly created jobs (per year)

jobs affected by energy shift (about 200000)



• Agri./fishery/mining:110000

- Construction 469000

 Manyfacturing 603000 incl. Metals/Mach. 448000

change
Inter-company chg

Positon

 Tertiary 1.451 million incl. wholesale/retails 611000 incl. services (businesses) 401000

## **Comparison with the US Inflation Reduction Law**

|                                                   | 2030 CO <sub>2</sub><br>Emission<br>reduction<br>compared<br>with 2005 | 2030 Zero<br>emission<br>power<br>proportion | Investment (10<br>years to 2030)                                                                                         | Annual Energy<br>cost reduction                                   | Annual<br>Energy cost<br>reduction<br>(househol<br>d ) | GDP<br>incre<br>ase    | Job<br>creation                                 | Avoided prematu re death by air pollution | Avoided damage<br>cost by climate<br>change   |
|---------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|------------------------|-------------------------------------------------|-------------------------------------------|-----------------------------------------------|
| Energy<br>innovatio<br>n<br>(2022)                | -37~-43%                                                               | 72~85%<br>(nuclear<br>20%)                   | <ul> <li>Public: 369 bil.</li> <li>USD (2023~</li> <li>2033)</li> <li>Capex180 bil.</li> <li>USD/year</li> </ul>         | 79~85 bil. USD                                                    | 79~80 USD                                              | 0.65<br>~<br>0.77<br>% | 1.2~1.3mil.<br>(2030)                           | 2900~<br>4500<br>(2030)                   | 211,3~335,1bil,<br>USD (2023~<br>2030)        |
| Princeton<br>Univ.<br>(Jenkins<br>et al,<br>2022) | -42%                                                                   |                                              | 4.1tri.USD (Only energy supply; 2023~2033)                                                                               | 50 bil USD (push down the price of oil and Gas by 5%, and 10~20%) | Hundreds<br>USD                                        |                        | 1.7 mil.<br>(only<br>energy<br>supply:<br>2030) | 35000<br>(2023~<br>2033)                  |                                               |
| Rhodium<br>Group<br>(Larsen et<br>al. 2022)       | -32~-42%                                                               | 60~<br>81%(nuclear<br>20%)                   |                                                                                                                          |                                                                   | 27~112<br>USD                                          |                        |                                                 |                                           |                                               |
| OMB(202<br>2)                                     | -40%                                                                   |                                              |                                                                                                                          |                                                                   |                                                        |                        |                                                 |                                           | 745 bil. USD~<br>1.917 tri USD<br>(2023~2050) |
| Report<br>2030<br>(GR<br>strategy)                | -61%<br>(compared<br>with 2013)                                        | 44%<br>(nuclear<br>0%)                       | Supply side: 51.3<br>trillion yen<br>Demand side:<br>150.7trillion yen<br>Public: 50 tri. JPY<br>Private: 151tri.<br>JPY | 35,8 tri. JPY                                                     |                                                        | 3.5%                   | 2.54 mil.<br>per year                           | 2920<br>(2021~<br>2030)                   |                                               |

### **Conclusion**

- Current administration is not positive on energy transition
- Many people in Japan still believe renewable is expensive and energy efficiency improvement are difficult
- Government and industry are doubling down on Hydrogen, Ammonia, CCUS to keep existing facilities and business model
- Materials to discuss the energy transition is getting ready even in Japan
- Communication with the stakeholder, such as the labor union needed
- To change the "narrative" still need time

#### References

•IRENA (2021) Renewable Energy and Jobs Annual Review 2021

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Oct/IRENA\_RE\_Jobs\_2021.pdf

•Littlecott Chris and Roberts Leo (2021) The rise and fall of coal: 2020 transition trends, 01 Mar 2021

https://www.e3g.org/news/2020-hastens-the-coal-exit/

•Research group on the energy transition for the future (2021) Report 2030: Achieving Green Recovery and 2050 Carbon Neutrality Roadmap to 2030, 2021 Feb.

https://green-recovery-japan.org/