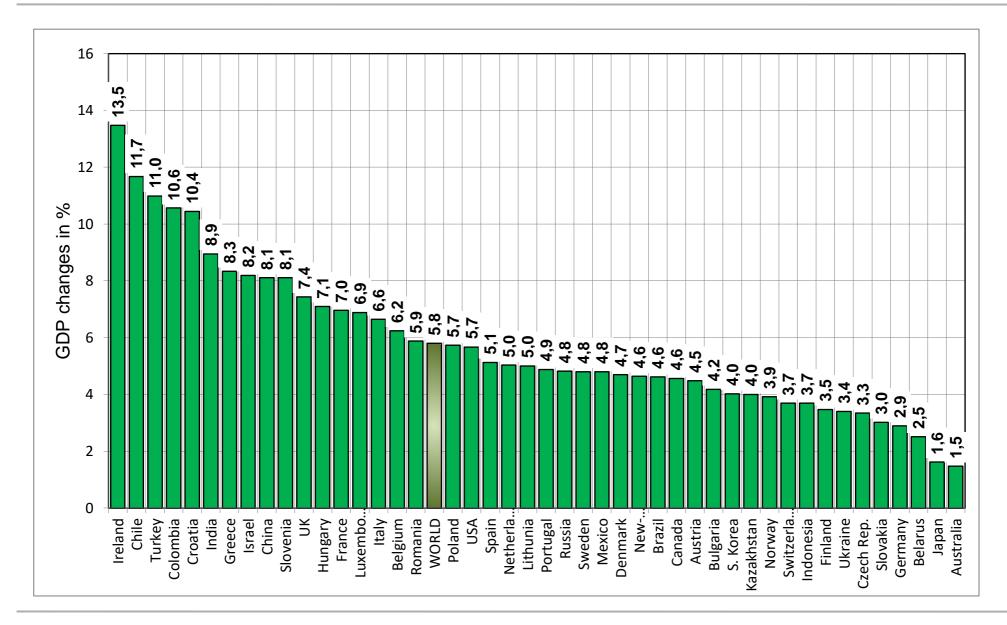
The development of global greenhouse gas emissions 2021 in the light of climate policies targets

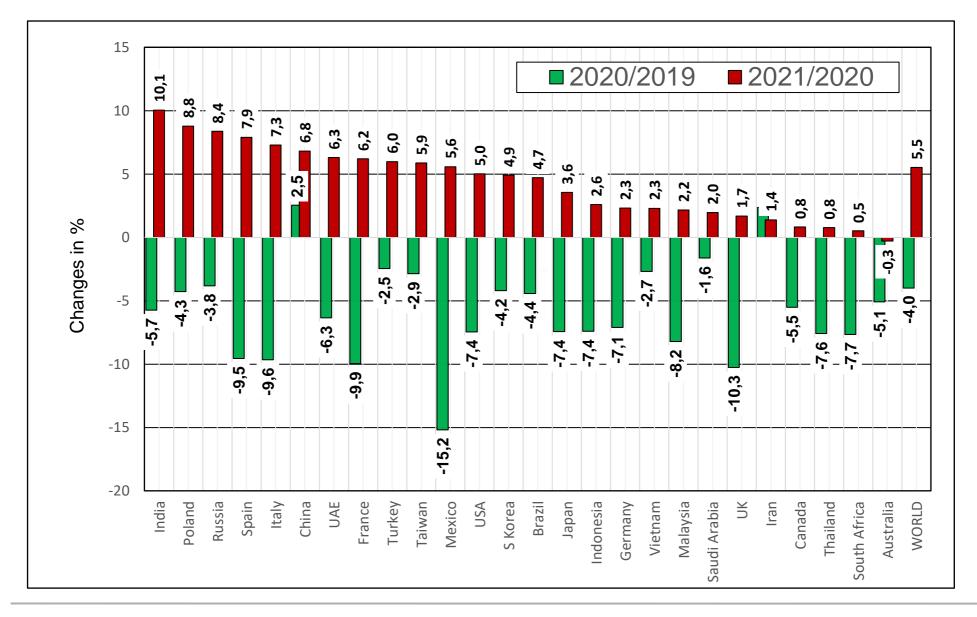
Hans-Joachim Ziesing

"Energy Transformation and Climate Change Challenges?" 25th REFORM Group Meeting October 03-07, 2022 – Salzburg Schloss Leopoldskron Instead of a preface - State of the Climate in 2021

- In 2021, the dominant greenhouse gases released into Earth's atmosphere continued to increase. The annual global average carbon dioxide (CO₂) concentration was 414.7 \pm 0.1 ppm, an increase of 2.6 \pm 0.1 ppm over 2020, the fifth-highest growth rate since the start of the instrumental record in 1958.
- This brings the concentration of CO₂ to, once again, the highest in the modern record and ice core records dating back 800,000 years.
- The growth rate for methane (CH_4) was the highest on record and the third highest for nitrous oxide (N_2O) , contributing to new record high atmospheric concentration levels for both gases.


Agenda

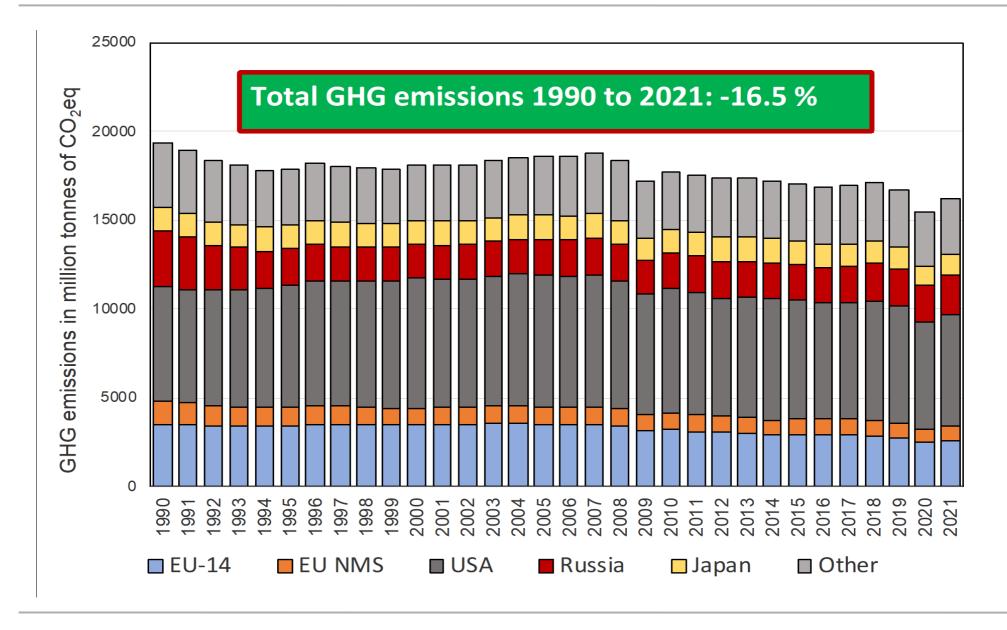
- Current development of global greenhouse gas emissions
 - Data sources and emissions development 1990 to 2021 by country and region
 - Drivers of emissions development
 - Development of energy consumption and energy productivity
- IEA-Scenarios of emissions development until 2050
- Some conclusions


- UNFCCC: National Communications from Parties included in Annex I to the Convention; National Greenhouse Gas Inventory Data from Annex I Parties for 1990 to 2020 (Greenhouse gas emissions/CO₂emissions)
- International Energy Agency (IEA): CO₂ Emissions from Fuel Combustion, 2020 Highlights, Annual historical series (1971-2019)
- > BP Statistical Review of World Energy 2021, June 2022
- > The World Bank, World Development Indicators, Database July 2022
- Eurostat Database

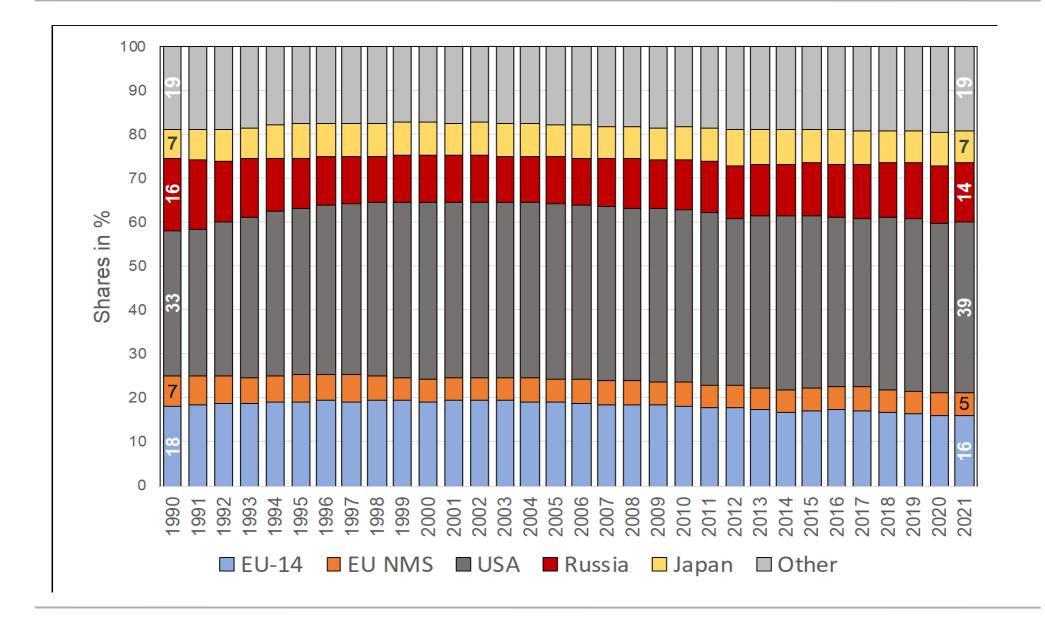
CO₂ emissions up to 2021 in Non-Annex I countries are extrapolated from the 2021 data on energy consumption published in the BP Statistics, June 2022, which are shown by country and energy source.

Changes of real GDP 2021 versus 2020 in selected countries

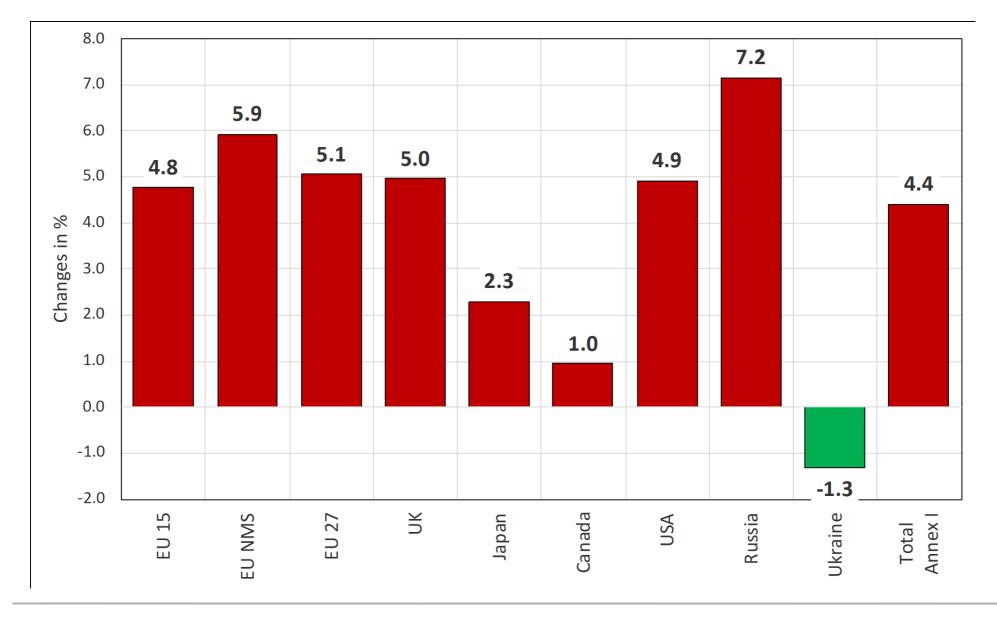
Changes of primary energy 2021 vs 2020 and 2020 vs 2019 in countries with \geq 4 Exajoule (around 100 Gtoe)

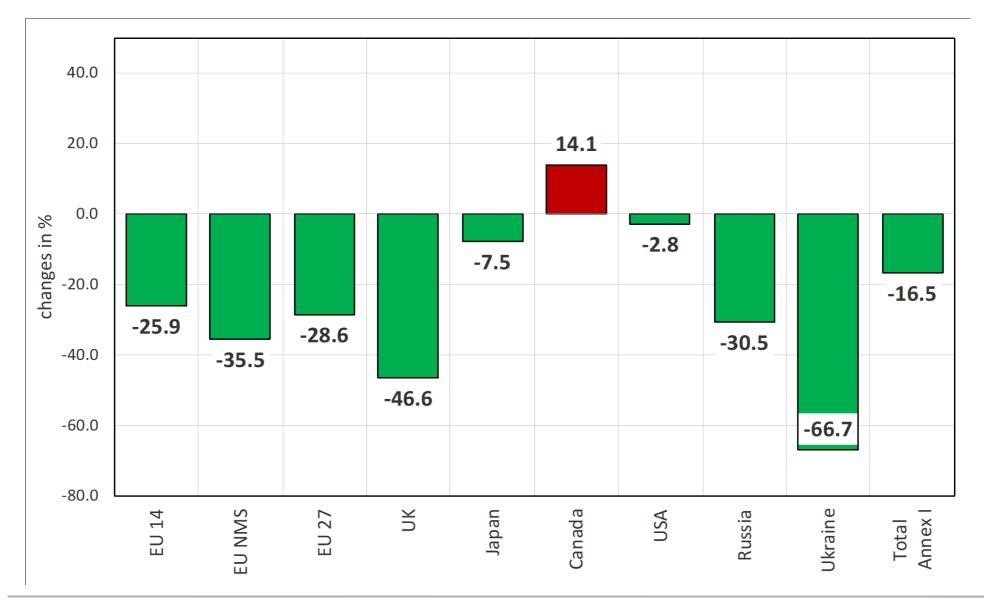


Greenhouse gas emissions in Annex I parties 1990 – 2021

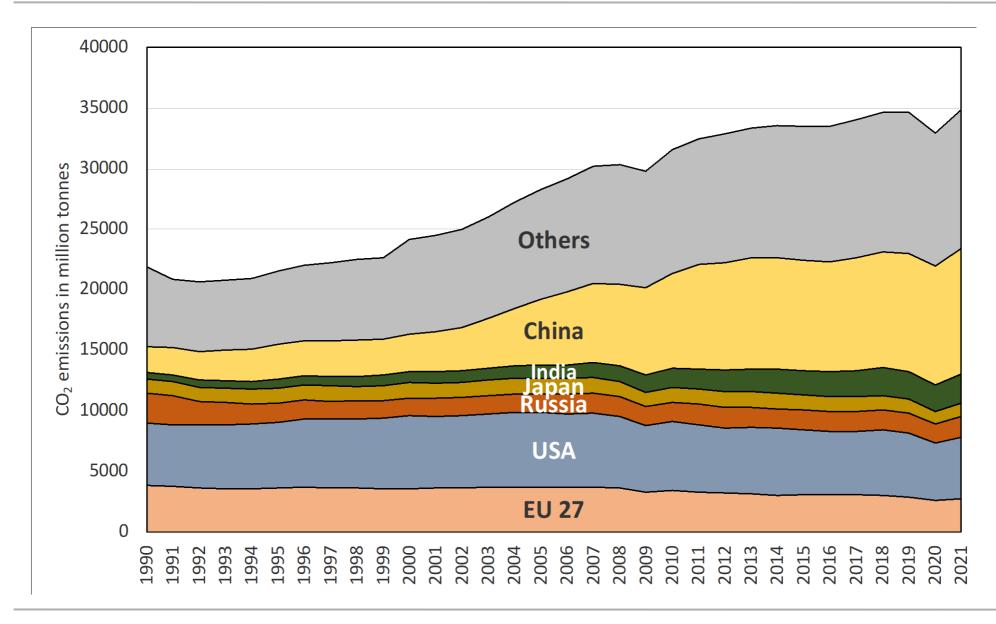

	1990	2000	2010	2019	2020	2021	2020/19	2021/20	2021/1990		
	GHG emissions in Gt CO₂eq							changes in %			
EU 14	3485	3478	3220	2717	2463	2581	-9.4	4.8	-25.9		
EU NMS	1333	937	932	865	811	859	-6.2	5.9	-35.5		
EU 27	4818	4414	4152	3582	3275	3440	-8.6	5.1	-28.6		
UK	797	714	609	448	406	426	-9.5	5.0	-46.6		
Japan	1270	1375	1301	1210	1148	1174	-5.1	2.3	-7.5		
Australia	426	490	537	546	528	517	-3.4	-2.0	21.5		
USA	6453	7328	7007	6572	5981	6276	-9.0	4.9	-2.8		
Canada	595	727	710	738	672	679	-8.9	1.0	14.1		
Turkey	220	299	399	508	524	560	3.1	7.0	155.1		
Russia	3163	1892	2012	2123	2051	2198	-3.4	7.2	-30.5		
Ukraine	942	428	407	334	318	314	-4.8	-1.3	-66.7		
Belarus	146	83	93	94	90	91	-4.3	1.5	-37.8		
New Zealand	3163	1892	2012	2123	2051	2198	-3.4	7.2	-30.5		
Total Annex I	19389	18153	17722	16698	15511	16195	-7.1	4.4	-16.5		

sources: UNFCCC; World Bank; IEA; BP; author's calculation.

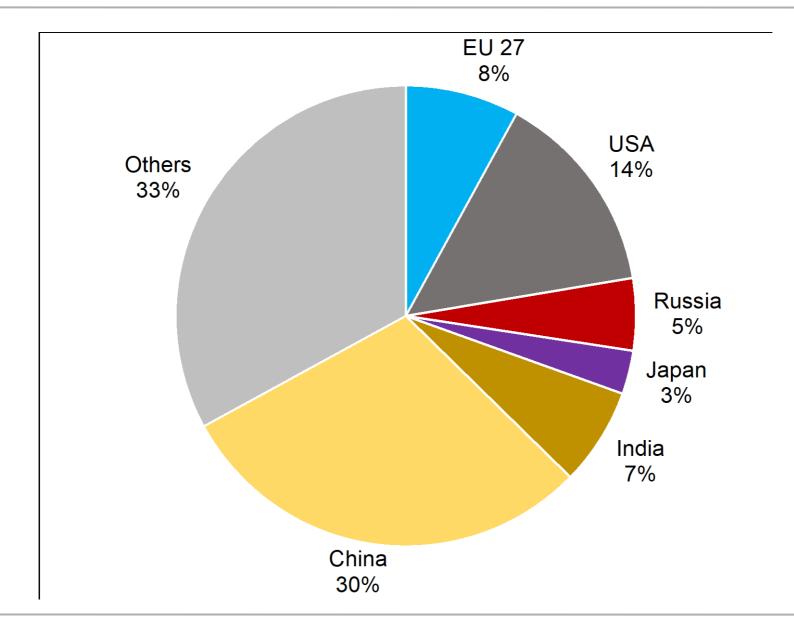

Greenhouse gas emissions in Annex I parties 1990 – 2021


sources: UNFCCC; World Bank; OECD; IEA; BP; author's calculation.

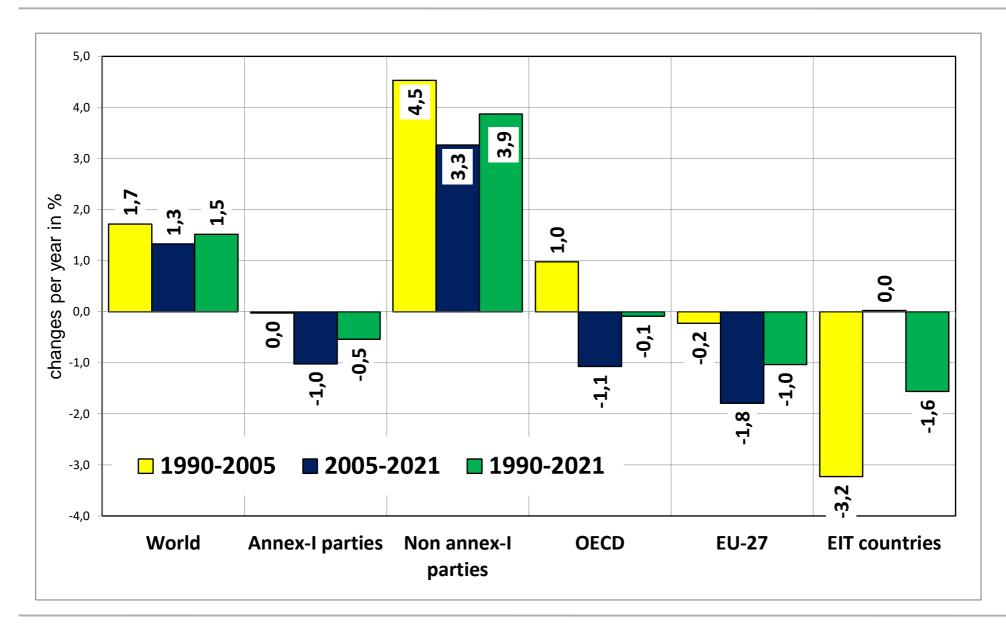
GHG emissions in Annex I parties: 2020 - 2021

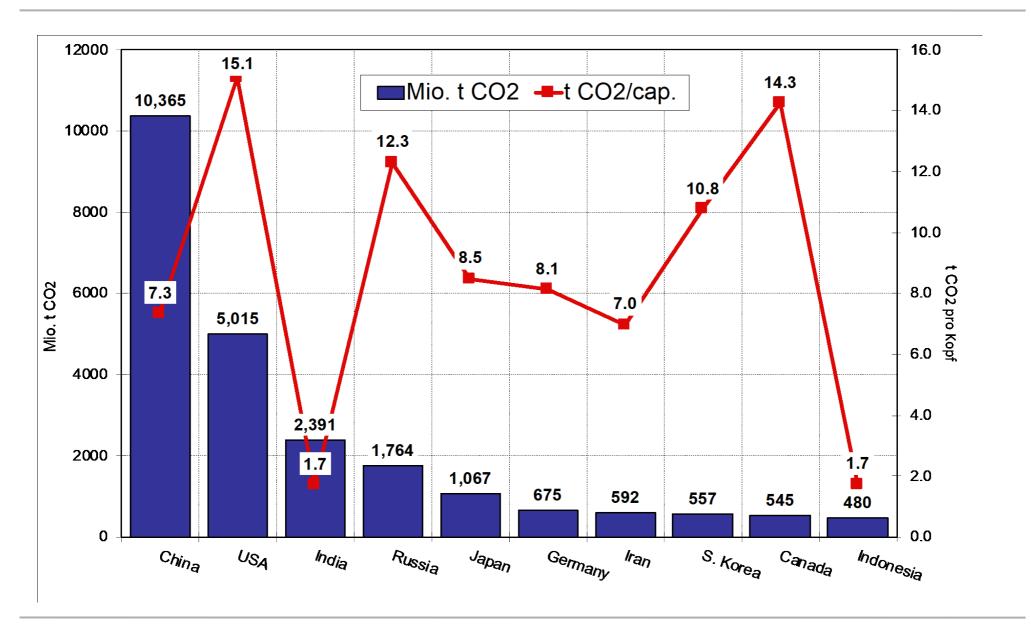


GHG emissions in Annex I parties: 1990 - 2021

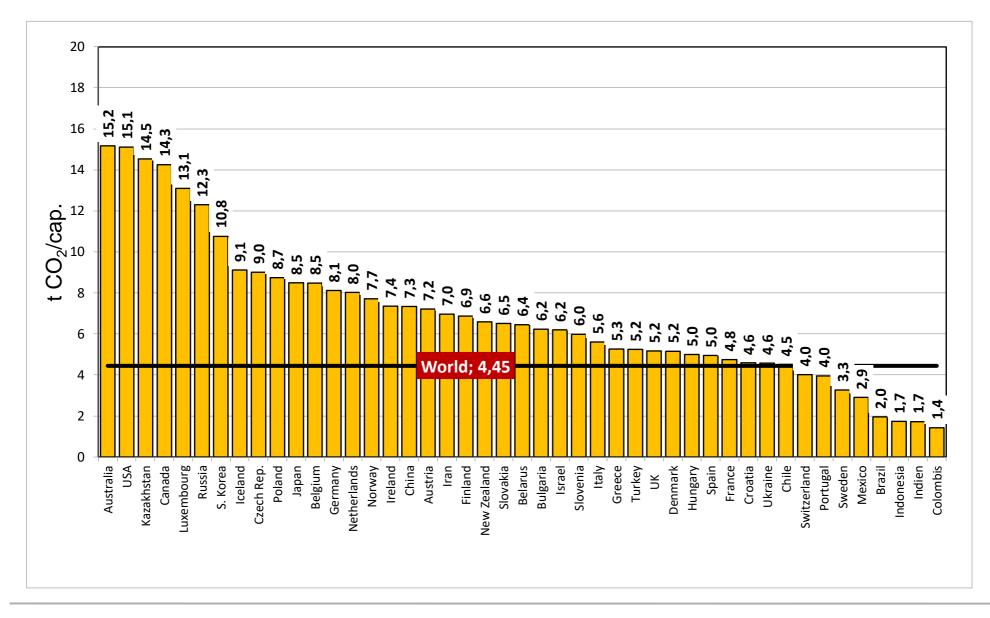


Region	1990	2000	2010	2019	2020	2021	2021/2020	2021/1990
Region		l	changes in %					
WORLD	21,894	24,168	31,584	34,699	32,927	34,877	5.9	59.3
Annex I	15,073	14,521	14,220	13,128	12,044	12,734	5.7	-15.5
Non-Annex I	6,821	9,647	17,364	21,571	20,882	22,143	6.0	224.6
including China	2,122	3,140	7,873	9,754	9,831	10,365	5.4	388.4
EIT	4,355	2,521	2,690	2,621	2,488	2,672	7.4	-38.6
OECD	12,069	13,514	13,288	12,308	11,163	11,744	5.2	-2.7
EU 27	3,845	3,583	3,421	2,898	2,608	2,784	6.7	-27.6
EU 14	2,810	2,853	2,683	2,227	1,984	2,110	6.3	-24.9
EU NMS	1,035	730	737	671	624	674	8.0	-34.9

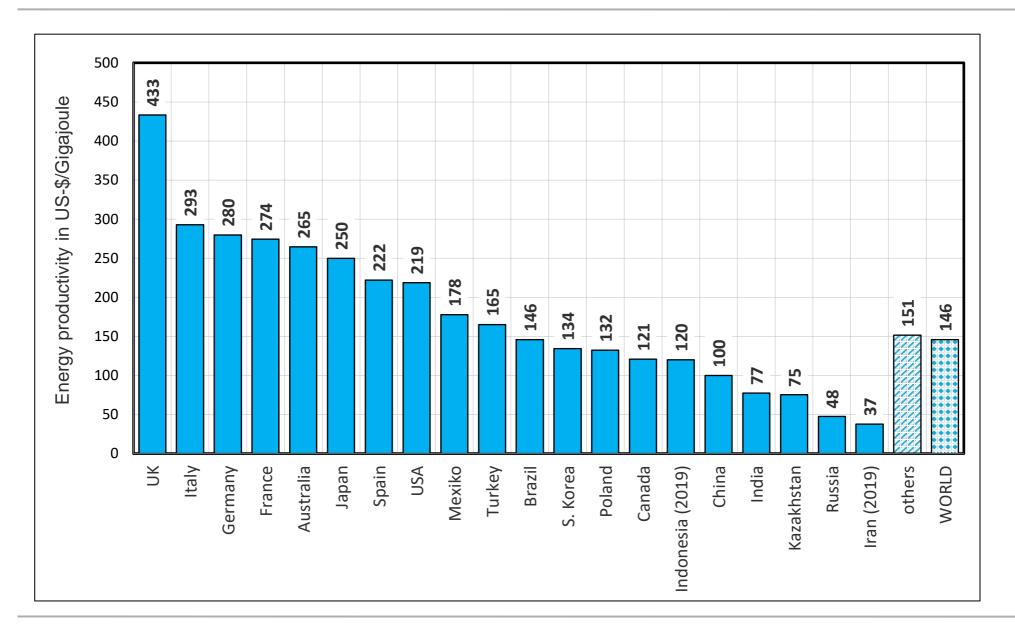

World-wide CO₂ emissions by countries 1990 - 2021


Share of countries and country groups in global CO_2 emissions 2021

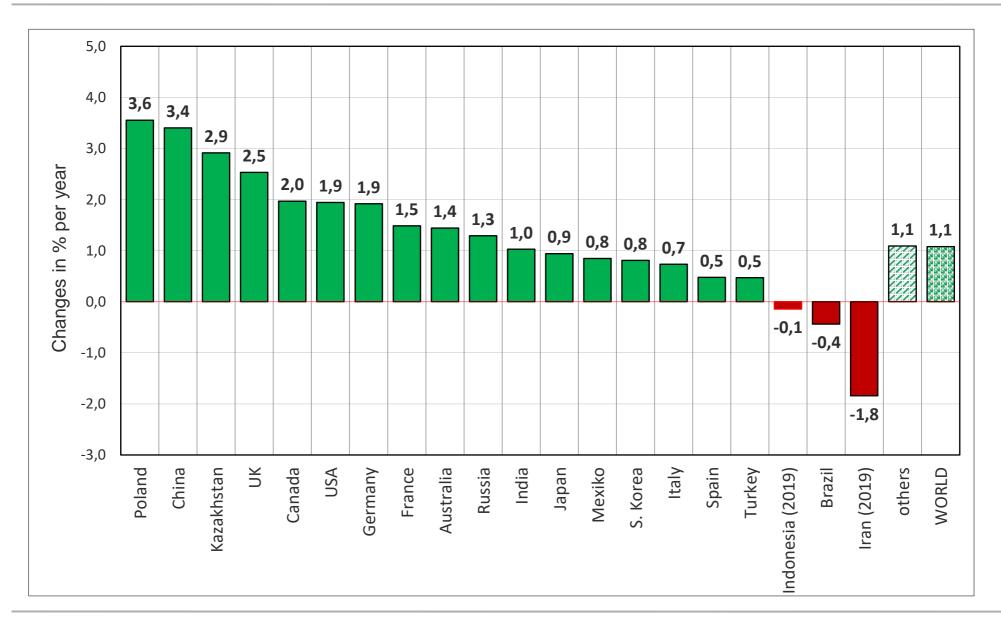
World-wide CO₂ emissions by regions 1990 - 2021



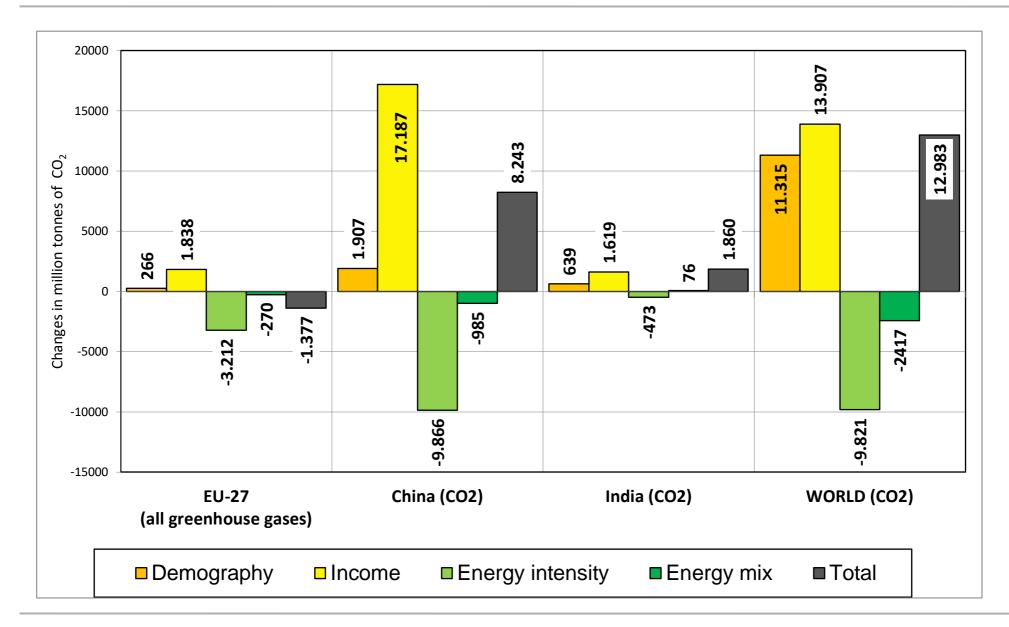
The ten major CO₂ emitters world-wide 2021


sources: UNFCCC; World Bank; OECD; IEA; Eurostat; author's calculation.

Per capita CO₂ emissions in selected countries 2021

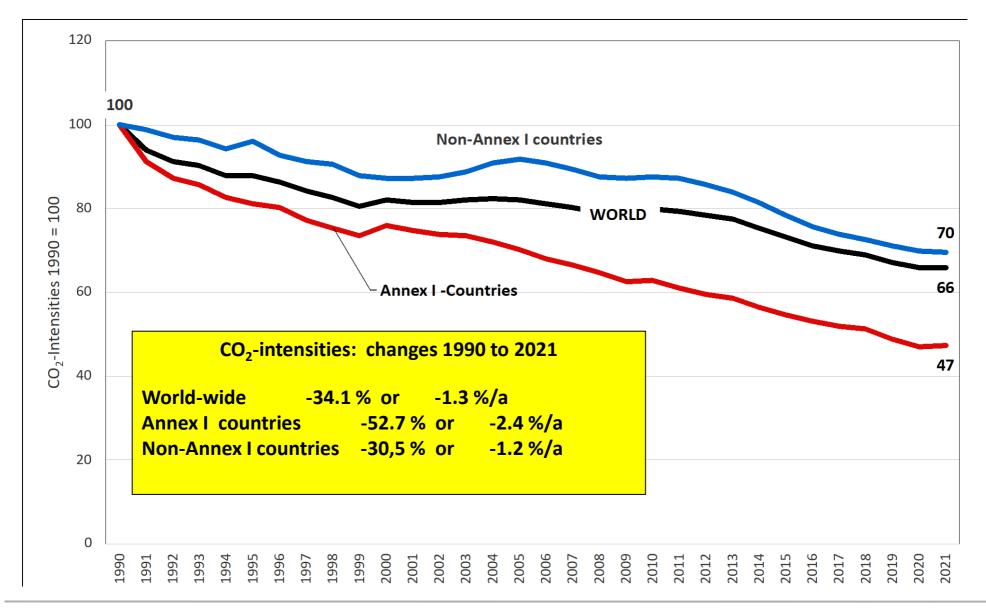

sources: UNFCCC; World Bank; IEA; Eurostat; BP; author's calculation.

Energy productivity in the 20 largest emitting countries 2021



sources: World Bank; IEA; BP; author's calculations.

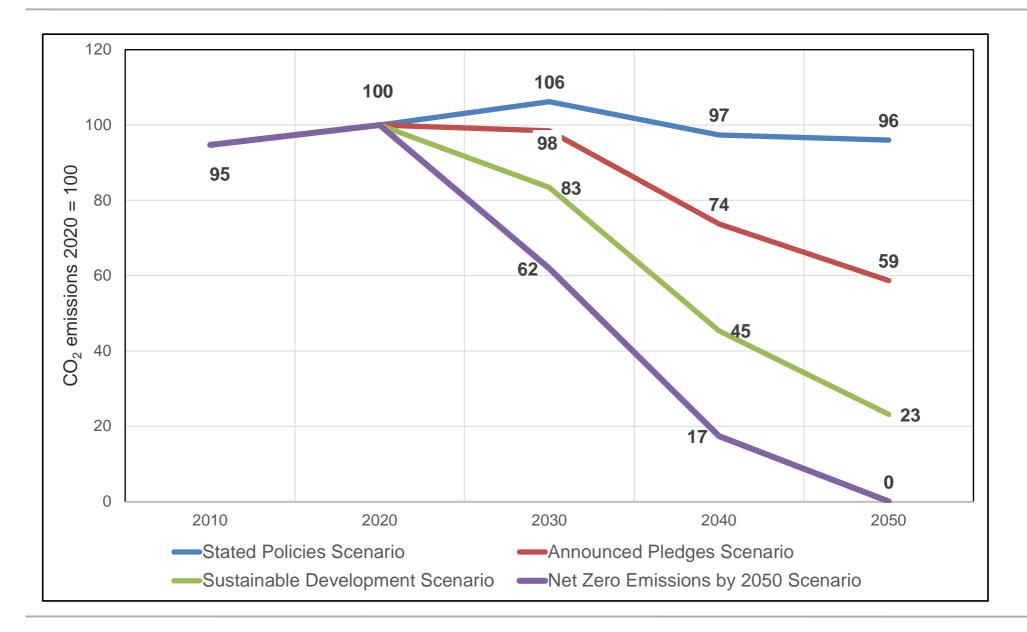
Changes of energy productivity in the 20 largest emitting countries 1990 – 2021



Components influencing GHG emissions 2021 vs. 1990

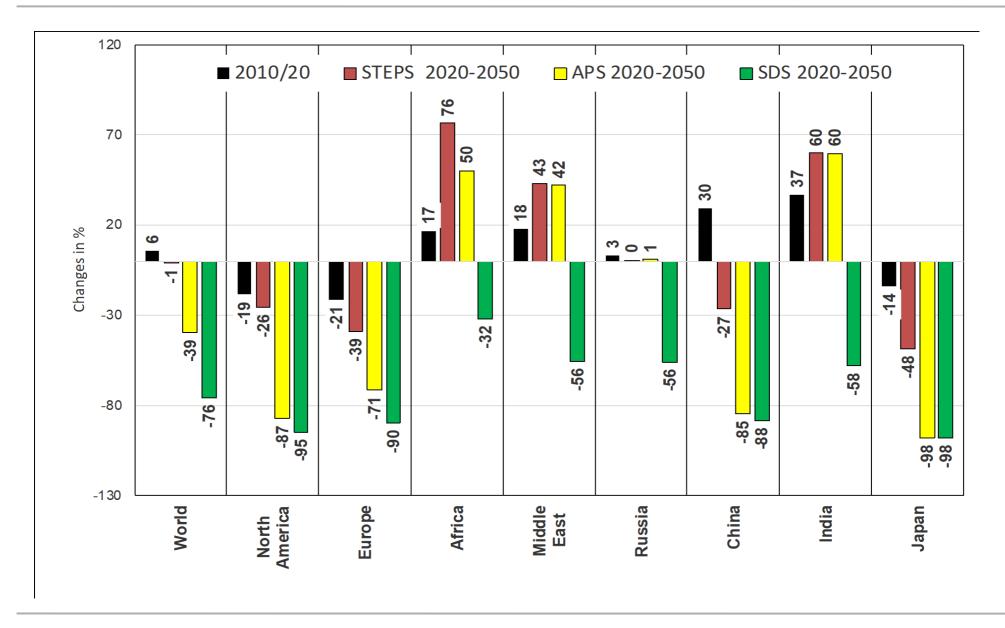
sources: UNFCCC; IEA; World Bank; author's calculaton.

GHG/CO₂ intensity in Annex I countries/world-wide CO₂ intensity 1990 - 2021

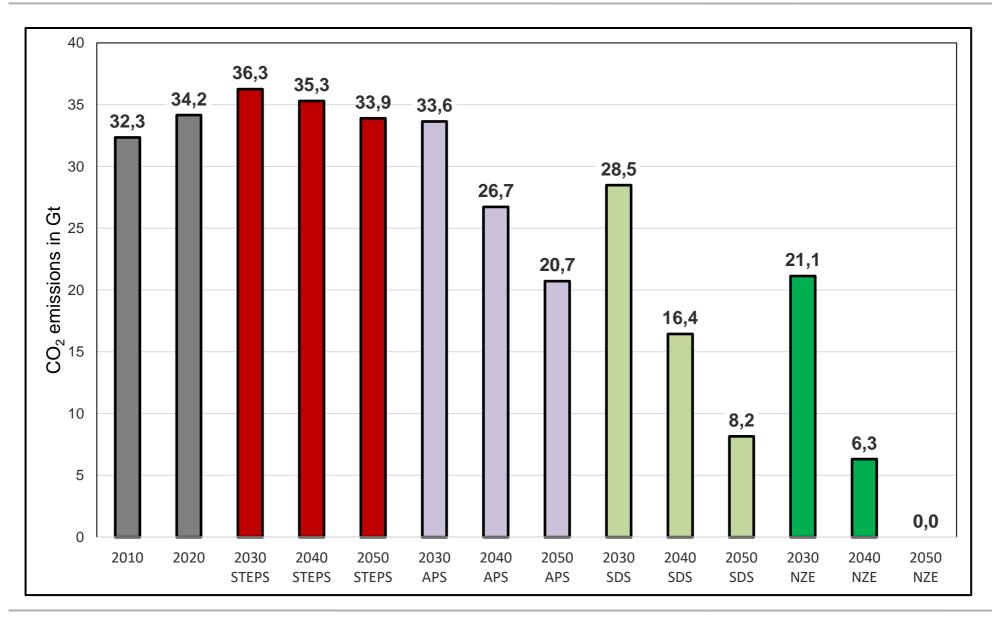


sources: UNFCCC; IEA; World Bank; BP; author's calculation.

In a momentous period for the future of energy and emissions, this *World Energy Outlook* uses several long-term scenarios to illustrate the choices that face the world's decision makers. The main scenarios are:


- Net Zero Emissions by 2050 Scenario (NZE), which sets out a narrow but achievable pathway for the global energy sector to achieve net zero CO₂ emissions by 2050.
- Announced Pledges Scenario (APS), which assumes that all climate commitments made by governments around the world, including NDCs and longer term net zero targets, will be met in full and on time.
- Stated Policies Scenario (STEPS), which reflects current policy settings based on a sector-by-sector assessment of the specific policies that are in place, as well as those that have been announced by governments around the world.
- Sustainable Development Scenario (SDS), which, like the NZE, achieves key energy-related United Nations Sustainable Development Goals related to universal energy access and major improvements in air quality, and reaches global net zero emissions by 2070.

Global CO₂ emissions 2020 – 2050 by type of scenario


source: Internationale Energy Agency, World Energy Outlook 2021

Changes of total CO_2 emissions worldwide and by region 2010 to 2020 and scenarios 2020 to 2050

sources: IEA, World Energy Outlook 2021. Note: STEPS = Stated Policies; APS = Announced Pledges; SDS = Sustainable Development.

World-wide CO_2 -Emissions 2010 – 2020 and scenarios 2030, 2040 and 2050

Net Zero Emissions by 2050 Scenario

	2020	2030	2040	2050	2050/2020
		in %			
Total CO ₂	33903	21147	6316	0	-100
Combustion activities	31582	19254	6030	940	-97
Coal	14110	5915	1299	195	-99
Oil	10264	7426	3329	928	-91
NaturalGas	7138	5960	1929	566	-92
Bioenergy and waste	71	-48	-528	-748	-1154
Industry removals	1	214	914	1186	
Biofuels production	1	142	385	553	
Direct air capture	0	71	528	633	
Electricity and heat sector	13504	5816	-81	-369	-103
Coal	9786	2950	102	69	-99
Oil	628	273	6	6	-99
NaturalGas	3089	2781	268	128	-96
Bioenergy and waste	0	-87	-457	-572	
Other energy sector	1472	679	-85	-368	-125
Final consumption	18928	14723	7011	1370	-93
Industry	8478	6892	3485	519	-94
Transport	7153	5719	2686	689	-90
Buildings	2860	1809	685	122	-96
Total CO ₂ removals	1	317	1457	1936	
Total CO ₂ captured	40	1665	5619	7602	

source: IEA, World Energy Outlook 2021.

Levels and fuel shares of electricity production in IEA scenarios

	Historical Data		State	d Policy Sce	nario	Announced Pledges Scenario		
	2010	2020	2030	2040	2050	2030	2040	2050
Total Generation in TWh	21520	26762	33575	40553	46703	34362	45618	54716
	Generation by fuel shares i					%		
Total Generation	100	100	100	100	100	100	100	100
Renewables	19,7	28,4	41,9	52,3	59,7	46,3	62,2	71,2
Nuclear	12,8	10,1	9,3	8,7	7,9	9,6	8,9	8,1
Hydrogen and ammonia	0,0	0,0	0,0	0,1	0,1	0,3	8,0	0,9
Fossil fuels with CCUS	0,0	0,0	0,1	0,2	0,3	0,4	2,5	3,2
Unabated fossil fuels	67,3	61,4	48,7	38,6	31,9	43,4	25,5	16,5
	Historic	al Data	Sustainable Development Scenario			Net Zero Emissions		
	2010	2020	2030	2040	2050	2030	2040	2050
	2010							
Total Generation in TWh	21520	26762	34424	45885	57950	37316	56553	71164
Total Generation in TWh					57950 uel shares in		56553	71164
Total Generation in TWh							56553 100	71164 100
	21520	26762	Ger	eratioin by f	uel shares in	%		
Total Generation	21520 100,0	26762 100,0	Ger 100	<mark>eratioin by f</mark> 100	<mark>uel shares in</mark> 100	<mark>%</mark> 100	100	100
Total Generation Renewables	21520 100,0 19,7	26762 100,0 28,4	Ger 100 53,1	eratioin by fo 100 74,9	uel shares in 100 83,6	% 100 61,1	100 84,0	100 87,6
Total Generation Renewables Nuclear	21520 100,0 19,7 12,8	26762 100,0 28,4 10,1	Ger 100 53,1 9,9	<mark>eratioin by f</mark> r 100 74,9 9,4	uel shares in 100 83,6 8,1	<mark>%</mark> 100 61,1 10,1	100 84,0 8,6	100 87,6 7,7

source: IEA, World Energy Outlook 2021.

- The outlook based on today's policy settings, the Stated Policies Scenario (STEPS), shows aggregate fossil fuel demand slowing to a plateau in the 2030s and then falling slightly by 2050. The global average temperature rise in this scenario passes the 1.5 degrees Celsius (°C) mark around 2030 and would still be climbing as it reaches 2.6 °C in 2100.
- Announced net zero pledges and enhanced Nationally Determined Contributions, if implemented in full as in the Announced Pledges Scenario (APS), start to bend the curve and means that global energy-related CO₂ emissions fall by 40 % until 2050 and bring the temperature rise in 2100 down to around 2.1 °C.
- A much greater global effort will be essential to reach the relative safety of the Net Zero Emissions by 2050 Scenario (NZE). Announced pledges close less than 20% of the emissions gap in 2030 between the STEPS and the NZE.

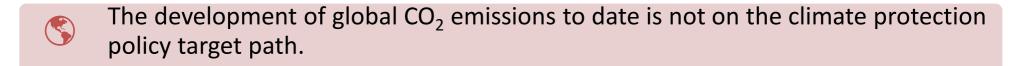
Actions in four key areas over the next decade are essential to keep the door open to a 1.5 °C stabilisation by 2050:

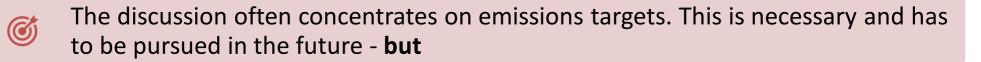
- a massive push for clean electrification (mainly solar PV and wind deployment)
- a renewed focus on realising the full potential of energy efficiency; together with measures to temper energy service demand through materials efficiency and behavioural change.
- concerted efforts to prevent leaks from fossil fuel operations; in particular, the aim must be to cut methane emissions from fossil fuels.
- a boost to clean energy innovation. This is a crucial gap to be filled in the 2020s. All the technologies needed to achieve deep emissions cuts to 2030 are available. But almost half of the emissions reductions achieved in the NZE in 2050 come from technologies that today are at the demonstration or prototype stage.

Getting the world on track for net zero emissions by 2050 requires transition-related investment to accelerate from current levels to around USD 4 trillion annually by 2030.

Transitions are accompanied by marked shifts in energy sector employment, but clean energy jobs expand faster than other sectors fall. The downside risks for jobs are concentrated in the coal sector, where retirements of coal-fired capacity approach 100 gigawatts (GW) per year over the coming decade in the NZE.

If the world gets on track for net zero emissions by 2050, then the cumulative **market opportunity** for manufacturers of **wind turbines**, **solar panels**, **lithium-ion batteries**, **electrolysers and fuel cells** amounts to USD 27 trillion. These five elements alone in 2050 would be larger than today's oil industry and its associated revenues.


This WEO-2021 provides **stark warnings** about the pathway that we are on, but also


clear-headed analysis of the actions

that can bring the world onto a path towards a 1.5 °C future – with a

strong affirmation of the benefits that this yields.

Conclusions – almost the same as all the previous years

The real emission's development and their business-as-usual-perspectives should not be neglected.

The gap between the desired targets and the expected real development can only be filled with an appropriate policy and effective measures for more energy efficiency and renewable energies.

Targets are necessary but not sufficient: It needs policies and measures. That's the proof for an effective climate protection policy and not only the target setting!

The present figures shows some promising results but the overall turning point is still far far away.

The paper is published in October in: "Energiewirtschaftliche Tagesfragen", 10/2022 (in German only)

> Thanks for listening hziesing@t-online.de

Periodic emission budgets with different reduction targets for 2030 and 2050

Targets (2030/2050 versus 1990)	Targets 2030 (Basis 1990 = 4.858 Mt CO ₂ e)	Actual budget 1990 to 2020	2021 to 2030	2031 to 2050	2021 to 2050	1990 to 2050		
	Million tCO ₂ e	Emission budgets in billion tons CO ₂ equivalent						
-40%/-100%	2,915	133.1	31.1	27.7	58.8	191.9		
-55%/-100%	2,186	133.1	27.1	20.8	47.9	181.0		
-65%/-100%	1,700	133.1	24.4	16.2	40.6	173.7		
		Annual averag	ge emission re	eduction in m	illion tons CO	2 equivalent		
-40%/-100%		-50	-44	-146	-112	-81		
-55%/-100%		-50	-116	-109	-112	-81		
-65%/-100%		-50	-165	-85	-112	-81		

sources: UNFCCC; author's calculation.